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OverviewOverviewOverviewOverview

• Brain connectivity: types & definitions
– anatomical connectivity
– functional connectivity
– effective connectivity

• Functional connectivity 

• Psycho-physiological interactions (PPI)

• Dynamic causal models (DCMs)

• Applications of DCM to fMRI data

OverviewOverviewOverviewOverview

Brain connectivity: types & definitions

physiological interactions (PPI)

Dynamic causal models (DCMs)

Applications of DCM to fMRI data



Structural, functional & effective connectivityStructural, functional & effective connectivityStructural, functional & effective connectivityStructural, functional & effective connectivity

• anatomical/structural connectivityanatomical/structural connectivityanatomical/structural connectivityanatomical/structural connectivity
= presence of axonal connections

• functional connectivity functional connectivity functional connectivity functional connectivity 
= statistical dependencies between regional time series

• effective connectivity effective connectivity effective connectivity effective connectivity 
= causal (directed) influences between neurons or neuronal populations

Structural, functional & effective connectivityStructural, functional & effective connectivityStructural, functional & effective connectivityStructural, functional & effective connectivity

Sporns 2007, Scholarpedia

statistical dependencies between regional time series

causal (directed) influences between neurons or neuronal populations

Sporns 2007, Scholarpedia



Anatomical connectivityAnatomical connectivityAnatomical connectivityAnatomical connectivity

Definition: 
presence of axonal connections

• neuronal  communication via 
synaptic contacts

• Measured with

– tracing techniques

– diffusion tensor imaging (DTI)

Anatomical connectivityAnatomical connectivityAnatomical connectivityAnatomical connectivity



Knowing Knowing Knowing Knowing anatomical connectivity is not enough...anatomical connectivity is not enough...anatomical connectivity is not enough...anatomical connectivity is not enough...

• Context-dependent recruiting of 
connections :
– Local functions depend on network activity

• Connections show synaptic plasticity
– change in the structure and transmission – change in the structure and transmission 

properties of a synapse
– even at short timescales

�Look at functional and effective 
connectivity

anatomical connectivity is not enough...anatomical connectivity is not enough...anatomical connectivity is not enough...anatomical connectivity is not enough...

Local functions depend on network activity

Connections show synaptic plasticity
change in the structure and transmission change in the structure and transmission 

Look at functional and effective 



Definition: statistical dependencies between regional time series

• Seed voxel correlation analysis

• Coherence analysis

Functional connectivityFunctional connectivityFunctional connectivityFunctional connectivity

• Coherence analysis

• Eigen-decomposition (PCA, SVD)

• Independent component analysis (ICA)

• any technique describing statistical dependencies amongst 
regional time series

Definition: statistical dependencies between regional time series

Seed voxel correlation analysis

Functional connectivityFunctional connectivityFunctional connectivityFunctional connectivity

decomposition (PCA, SVD)

Independent component analysis (ICA)

any technique describing statistical dependencies amongst 



SeedSeedSeedSeed----voxel correlation analysesvoxel correlation analysesvoxel correlation analysesvoxel correlation analyses

• hypothesis-driven choice of a 
seed voxel 

• extract reference 
time seriestime series

• voxel-wise correlation with 
time series from all other 
voxels in the brain

voxel correlation analysesvoxel correlation analysesvoxel correlation analysesvoxel correlation analyses

seed voxelseed voxelseed voxelseed voxel



SVCA example: SVCA example: SVCA example: SVCA example: 
TaskTaskTaskTask----induced changes in functional connectivityinduced changes in functional connectivityinduced changes in functional connectivityinduced changes in functional connectivity

2 bimanual finger2 bimanual finger2 bimanual finger2 bimanual finger----tapping tasks:tapping tasks:tapping tasks:tapping tasks:

During task that required more 
bimanual coordination, SMA, 
PPC, M1 and  PM showed PPC, M1 and  PM showed 
increased functional connectivity 
(p<0.001) with left M1

� No difference in SPMs!

Sun et al. 2003, Neuroimage

SVCA example: SVCA example: SVCA example: SVCA example: 
induced changes in functional connectivityinduced changes in functional connectivityinduced changes in functional connectivityinduced changes in functional connectivity



Does functional connectivity not simply Does functional connectivity not simply Does functional connectivity not simply Does functional connectivity not simply 
correspond to cocorrespond to cocorrespond to cocorrespond to co----activation in SPMs?activation in SPMs?activation in SPMs?activation in SPMs?

No

Here both areas A1 and A2
are correlated identically to 

regional regional regional regional 
response Aresponse Aresponse Aresponse A

are correlated identically to 
task T, yet they have zero 
correlation among 
themselves:

r(A1,T) = r(A2,T) = 0.71
but
r(A1,A2) = 0 !

Does functional connectivity not simply Does functional connectivity not simply Does functional connectivity not simply Does functional connectivity not simply 
activation in SPMs?activation in SPMs?activation in SPMs?activation in SPMs?

task Ttask Ttask Ttask T regional response Aregional response Aregional response Aregional response A2222
response Aresponse Aresponse Aresponse A1111

Stephan 2004, J. Anat.



Pros & Cons of functional connectivity analysis Pros & Cons of functional connectivity analysis Pros & Cons of functional connectivity analysis Pros & Cons of functional connectivity analysis 

• Pros:
– useful when we have no experimental control over 

the system of interest and no model of what caused 
the data (e.g. sleep, hallucinations, etc.)

• Cons:• Cons:
– interpretation of resulting patterns is difficult / arbitrary 
– no mechanistic insight
– usually suboptimal for situations where we have a 

priori knowledge / experimental control

�Effective connectivity

Pros & Cons of functional connectivity analysis Pros & Cons of functional connectivity analysis Pros & Cons of functional connectivity analysis Pros & Cons of functional connectivity analysis 

useful when we have no experimental control over 
the system of interest and no model of what caused 
the data (e.g. sleep, hallucinations, etc.)

interpretation of resulting patterns is difficult / arbitrary 

usually suboptimal for situations where we have a 
priori knowledge / experimental control



Effective connectivityEffective connectivityEffective connectivityEffective connectivity
Definition: causal causal causal causal (directed) influences between neurons or 

neuronal populations

• In vivo and in vitro stimulation and recording
••
•
•
• Models of causal interactions among neuronal populations

– explain regional effects in terms of 

Effective connectivityEffective connectivityEffective connectivityEffective connectivity
(directed) influences between neurons or 
neuronal populations

stimulation and recording

among neuronal populations
in terms of interregional connectivity



Some models for computing effective connectivity Some models for computing effective connectivity Some models for computing effective connectivity Some models for computing effective connectivity 
from fMRI datafrom fMRI datafrom fMRI datafrom fMRI data

• Structural Equation Modelling (SEM) 
McIntosh et al. 1991, 1994; Büchel & Friston 1997; Bullmore et al. 2000

• regression models 
(e.g. psycho-physiological interactions, PPIs)
Friston et al. 1997Friston et al. 1997

• Volterra kernels 
Friston & Büchel 2000

• Time series models (e.g. MAR, Granger causality)
Harrison et al. 2003, Goebel et al. 2003

• Dynamic Causal Modelling (DCM)
bilinear: Friston et al. 2003;   nonlinear: Stephan et al. 2008

Some models for computing effective connectivity Some models for computing effective connectivity Some models for computing effective connectivity Some models for computing effective connectivity 
from fMRI datafrom fMRI datafrom fMRI datafrom fMRI data

Structural Equation Modelling (SEM) 
McIntosh et al. 1991, 1994; Büchel & Friston 1997; Bullmore et al. 2000

physiological interactions, PPIs)

Time series models (e.g. MAR, Granger causality)

Dynamic Causal Modelling (DCM)
Stephan et al. 2008



PsychoPsychoPsychoPsycho----physiological interaction (PPI)physiological interaction (PPI)physiological interaction (PPI)physiological interaction (PPI)

• bilinear model of how the psychological context 
the influence of area B on area 

B x A → CB x A → C

• A PPI corresponds to differences in regression slopes 
for different contexts.

physiological interaction (PPI)physiological interaction (PPI)physiological interaction (PPI)physiological interaction (PPI)

bilinear model of how the psychological context A changes 
on area C :

A PPI corresponds to differences in regression slopes 



PsychoPsychoPsychoPsycho----physiological interaction (PPI)physiological interaction (PPI)physiological interaction (PPI)physiological interaction (PPI)
Task factor

Task A Task B
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We can replace one main effect in 
the GLM by the time series of an 
area that shows this main effect.
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Friston et al. 1997, NeuroImage

physiological interaction (PPI)physiological interaction (PPI)physiological interaction (PPI)physiological interaction (PPI)
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V1V1 V5V5

AttentionAttentionAttentionAttention

Example PPI: Attentional modulation of V1Example PPI: Attentional modulation of V1Example PPI: Attentional modulation of V1Example PPI: Attentional modulation of V1

Friston et al. 1997, NeuroImage
Büchel & Friston 1997, Cereb. Cortex

V1 x Att.V1 x Att.

====

V5V5

SPM{Z}

V5
 a

ct
iv

ity

Example PPI: Attentional modulation of V1Example PPI: Attentional modulation of V1Example PPI: Attentional modulation of V1Example PPI: Attentional modulation of V1→V5→V5→V5→V5
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Pros & Cons of PPIsPros & Cons of PPIsPros & Cons of PPIsPros & Cons of PPIs
• Pros:

– given a single source region, we can test for its context
connectivity across the entire brain

– easy to implement

• Cons:
– only allows to model contributions from a single area – only allows to model contributions from a single area 
– operates at the level of BOLD time series
– ignores time-series properties of the data

Dynamic Causal Models

Pros & Cons of PPIsPros & Cons of PPIsPros & Cons of PPIsPros & Cons of PPIs

given a single source region, we can test for its context-dependent 
connectivity across the entire brain

only allows to model contributions from a single area only allows to model contributions from a single area 
operates at the level of BOLD time series

series properties of the data

Dynamic Causal Models



OverviewOverviewOverviewOverview

• Brain connectivity: types & definitions

• Functional connectivity 

• Psycho-physiological interactions (PPI)

• Dynamic causal models (DCMs)• Dynamic causal models (DCMs)
– Basic idea
– Neural level
– Hemodynamic level
– Parameter estimation, priors & inference

• Applications of DCM to fMRI data

OverviewOverviewOverviewOverview

Brain connectivity: types & definitions

physiological interactions (PPI)

Dynamic causal models (DCMs)Dynamic causal models (DCMs)

Parameter estimation, priors & inference

Applications of DCM to fMRI data



Basics of Dynamic Causal Modelling

DCM allows us to look at how areas within a network  interact:

Investigate functional integration & modulation of specific cortical pathways

– Temporal dependency of activity within and between areas (causality)

Basics of Dynamic Causal Modelling

DCM allows us to look at how areas within a network  interact:

Investigate functional integration & modulation of specific cortical pathways

Temporal dependency of activity within and between areas (causality)



Temporal dependence and causal relations

Seed voxel approach, PPI etc. 

timeseries (neuronal activity)

Temporal dependence and causal relations

Dynamic Causal Models

timeseries (neuronal activity)



Basics of Dynamic Causal Modelling

DCM allows us to look at how areas within a network  interact:

Investigate functional integration & modulation of specific cortical pathways

– Temporal dependency of activity within and between areas (causality)

– Separate neuronal activity from observed BOLD responses

Basics of Dynamic Causal Modelling

DCM allows us to look at how areas within a network  interact:

Investigate functional integration & modulation of specific cortical pathways

Temporal dependency of activity within and between areas (causality)

Separate neuronal activity from observed BOLD responses



• Cognitive system is modelled at its underlying 
neuronal level (not directly accessible for 

• The modelled neuronal dynamics (x) are 
transformed into area-specific BOLD signals (
a hemodynamic model (λλλλ).

Basics of DCM: Basics of DCM: Basics of DCM: Basics of DCM: 
Neuronal and BOLD levelNeuronal and BOLD levelNeuronal and BOLD levelNeuronal and BOLD level

a hemodynamic model (λλλλ).

The aim of DCM is to estimate parameters 
at the neuronal level such that the modelled 
and measured BOLD signals are 
maximally* similar.

Cognitive system is modelled at its underlying 
(not directly accessible for fMRI).

) are 
specific BOLD signals (y) by 

x

Basics of DCM: Basics of DCM: Basics of DCM: Basics of DCM: 
Neuronal and BOLD levelNeuronal and BOLD levelNeuronal and BOLD levelNeuronal and BOLD level

λ

y

parameters 
such that the modelled 



DCM: Linear ModelDCM: Linear ModelDCM: Linear ModelDCM: Linear Model
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DCM: Bilinear ModelDCM: Bilinear ModelDCM: Bilinear ModelDCM: Bilinear Model
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• Cognitive system is modelled at its underlying 
neuronal level (not directly accessible for 

• The modelled neuronal dynamics (x) are 
transformed into area-specific BOLD signals (
a hemodynamic model (λ).

Basics of DCM: Basics of DCM: Basics of DCM: Basics of DCM: 
Neuronal and BOLD levelNeuronal and BOLD levelNeuronal and BOLD levelNeuronal and BOLD level

a hemodynamic model (λ).

Cognitive system is modelled at its underlying 
(not directly accessible for fMRI).

) are 
specific BOLD signals (y) by 

x

Basics of DCM: Basics of DCM: Basics of DCM: Basics of DCM: 
Neuronal and BOLD levelNeuronal and BOLD levelNeuronal and BOLD levelNeuronal and BOLD level

λ

y



important for model fitting, but 
of no interest for statistical 
inference

The hThe hThe hThe hemodynamic modelemodynamic modelemodynamic modelemodynamic model
• 6 hemodynamic 

parameters:

of no interest for statistical 
inference

• Computed separately for 
each area → region-specific 
HRFs!

Friston et al. 2000, NeuroImage
Stephan et al. 2007, NeuroImage

emodynamic modelemodynamic modelemodynamic modelemodynamic model
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Measured vs Modelled BOLD signalMeasured vs Modelled BOLD signalMeasured vs Modelled BOLD signalMeasured vs Modelled BOLD signal
RecapRecapRecapRecap
The aim of DCM is to estimate
- neural parameters {A, B, C}
- hemodynamic parameters 
such that the modelled modelled modelled modelled and measured measured measured measured BOLD signals are maximally similar

u1u1u1u1u1u1u1u1

Measured vs Modelled BOLD signalMeasured vs Modelled BOLD signalMeasured vs Modelled BOLD signalMeasured vs Modelled BOLD signal

BOLD signals are maximally similar.

X1X1X1X1 X2X2X2X2 X3X3X3X3

u2u2u2u2 u3u3u3u3
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OverviewOverviewOverviewOverview

• Brain connectivity: types & definitions

• Functional connectivity

• Psycho-physiological interactions (PPI)

• Dynamic causal models (DCMs)• Dynamic causal models (DCMs)
– Basic idea
– Neural level
– Hemodynamic level
– Parameter estimation, priors & inference

• Applications of DCM to fMRI data

OverviewOverviewOverviewOverview

Brain connectivity: types & definitions

physiological interactions (PPI)

Dynamic causal models (DCMs)Dynamic causal models (DCMs)

Parameter estimation, priors & inference

Applications of DCM to fMRI data



DCM parameters =  rate constantsDCM parameters =  rate constantsDCM parameters =  rate constantsDCM parameters =  rate constants

dx
ax

dt
= 0( ) exp( )x t x at=

The coupling parameter a determines 

Integration of a first-order linear differential equation gives an
exponential function:

The coupling parameter a determines 
the half life of x(t), and thus describes 
the speed of the exponential change

If AIf AIf AIf A����B is 0.10 sB is 0.10 sB is 0.10 sB is 0.10 s----1111 this means that, this means that, this means that, this means that, 
activity in B corresponds to 10% of the activity in Aactivity in B corresponds to 10% of the activity in Aactivity in B corresponds to 10% of the activity in Aactivity in B corresponds to 10% of the activity in A

DCM parameters =  rate constantsDCM parameters =  rate constantsDCM parameters =  rate constantsDCM parameters =  rate constants

( ) exp( )x t x at

order linear differential equation gives an

0.5x00.5x

a/2ln=τ

this means that, this means that, this means that, this means that, per unit time, the increase in per unit time, the increase in per unit time, the increase in per unit time, the increase in 
activity in B corresponds to 10% of the activity in Aactivity in B corresponds to 10% of the activity in Aactivity in B corresponds to 10% of the activity in Aactivity in B corresponds to 10% of the activity in A
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Conceptual overviewConceptual overviewConceptual overviewConceptual overview

Neuronal states

cccc2222

cccc1111

Driving inputDriving inputDriving inputDriving input
(e.g. sensory stim

Modulatory inputModulatory inputModulatory inputModulatory input
(e.g. context/learning/drugs)

bbbb12121212

y
y

activity
x1(t) aaaa12121212 activity

x2(t)

BOLD Response

Conceptual overviewConceptual overviewConceptual overviewConceptual overview

sensory stim) Parameters are optimised 

so that the predicted 

matches the measured 

BOLD responseBOLD response

�How confident are we 

about these parameters? 



Bayesian statisticsBayesian statisticsBayesian statisticsBayesian statistics

posterior       posterior       posterior       posterior       ∝∝∝∝ likelihood    likelihood    likelihood    likelihood    ∙  ∙  ∙  ∙  priorpriorpriorprior

Express our prior knowledgeprior knowledgeprior knowledgeprior knowledge or “belief” about parameters of the model

new datanew datanew datanew data prior knowledgeprior knowledgeprior knowledgeprior knowledge

posterior       posterior       posterior       posterior       ∝∝∝∝ likelihood    likelihood    likelihood    likelihood    ∙  ∙  ∙  ∙  priorpriorpriorprior

Bayesian statisticsBayesian statisticsBayesian statisticsBayesian statistics
or “belief” about parameters of the model

Parameters governing
• Hemodynamics in a single region
• Neuronal interactions

Constraints (priors) onConstraints (priors) on
• Hemodynamic parameters

- empirical 

• Self connections
-principled

• Other connections
- shrinkage



Inference about DCM parametersInference about DCM parametersInference about DCM parametersInference about DCM parameters

Bayesian single subject analysis

• The model parameters are 
distributions that have a mean ηθ|y
and covariance Cθ|y.

– Use of the cumulative normal 
distribution to test the probability distribution to test the probability 
that a certain parameter is above a 
chosen threshold γ:

 γ ηθ|y

Inference about DCM parametersInference about DCM parametersInference about DCM parametersInference about DCM parameters

Classical frequentist test across Ss

• Test summary statistic: mean ηθ|y

– One-sample t-test: Parameter > 0?

– Paired t-test:
parameter 1 > parameter 2? 

– Paired t-test:
parameter 1 > parameter 2? 

– rmANOVA: e.g. in case of multiple 
sessions per subject

Bayesian model averaging



Inference about model spaceInference about model spaceInference about model spaceInference about model space

Model evidence: The optimal balance of fit and complexity

Inference about model spaceInference about model spaceInference about model spaceInference about model space

Model evidence: The optimal balance of fit and complexity



Inference about model spaceInference about model spaceInference about model spaceInference about model space

Model evidence: The optimal balance of fit and complexity

Comparing models

• Which is the best model?

lm
e

Inference about model spaceInference about model spaceInference about model spaceInference about model space

Model evidence: The optimal balance of fit and complexity

1 2 3 4 5 6 7 8 9 10
model



Inference about model spaceInference about model spaceInference about model spaceInference about model space

Model evidence: The optimal balance of fit and complexity

Comparing models

• Which is the best model?

Comparing families of models

• What type of model is best?
• Feedforward vs feedback 

• Parallel vs sequential processing

• With or without modulation

Inference about model spaceInference about model spaceInference about model spaceInference about model space

Model evidence: The optimal balance of fit and complexity

1 2 3 4 5 6 7 8 9 10

lm
e

1 2 3 4 5 6 7 8 9 10
model



Inference about model spaceInference about model spaceInference about model spaceInference about model space

Model evidence: The optimal balance of fit and complexity

Comparing models

• Which is the best model?

Comparing families of models

• What type of model is best?
• Feedforward vs feedback 

• Parallel vs sequential processing

• With or without modulation

Only compare models with the same data

Inference about model spaceInference about model spaceInference about model spaceInference about model space

Model evidence: The optimal balance of fit and complexity

1 2 3 4 5 6 7 8 9 10

lm
e

Only compare models with the same data

1 2 3 4 5 6 7 8 9 10
model

A

D

B

C

A

B

C



OverviewOverviewOverviewOverview

• Brain connectivity: types & definitions

• Functional connectivity

• Psycho-physiological interactions (PPI)

• Dynamic causal models (DCMs)• Dynamic causal models (DCMs)

• Applications of DCM to fMRI data
– Design of experiments and models
– Generating data

OverviewOverviewOverviewOverview

Brain connectivity: types & definitions

physiological interactions (PPI)

Dynamic causal models (DCMs)Dynamic causal models (DCMs)

Applications of DCM to fMRI data
Design of experiments and models



Planning a DCMPlanning a DCMPlanning a DCMPlanning a DCM----

• Suitable experimental design:
– any design that is suitable for a GLM 
– preferably multi-factorial (e.g. 2 x 2)

• e.g. one factor that varies the driving
• and one factor that varies the contextual

• Hypothesis and model:
– Define specific a priori hypothesis
– Which parameters are relevant to test this hypothesis?
– If you want to verify that intended model is suitable to test this hypothesis, 

then use simulations
– Define criteria for inference
– What are the alternative models to test?

----compatible studycompatible studycompatible studycompatible study

any design that is suitable for a GLM 
factorial (e.g. 2 x 2)

driving (sensory) input
contextual input

Which parameters are relevant to test this hypothesis?
If you want to verify that intended model is suitable to test this hypothesis, 

What are the alternative models to test?



Multifactorial design: Multifactorial design: Multifactorial design: Multifactorial design: 
explaining interactions with DCMexplaining interactions with DCMexplaining interactions with DCMexplaining interactions with DCM

Task factor
Task A Task B

St
im

 1
St

im
 2

St
im

ul
us

 fa
ct

or

A1 B1

St
im

 2
St

im
ul

us
 fa

ct
or

A2 B2

Let’s assume that an SPM analysis 
shows a main effect of stimulus in 
X1 and a stimulus × task interaction 
in X2.  

How do we model this using DCM?

Multifactorial design: Multifactorial design: Multifactorial design: Multifactorial design: 
explaining interactions with DCMexplaining interactions with DCMexplaining interactions with DCMexplaining interactions with DCM

XXXX1111 XXXX2222

Stim2/Stim2/Stim2/Stim2/
Task ATask ATask ATask A

Stim1/Stim1/Stim1/Stim1/
Task ATask ATask ATask A

GLMGLMGLMGLM

Stim 1/Stim 1/Stim 1/Stim 1/
Task BTask BTask BTask B

Stim 2/Stim 2/Stim 2/Stim 2/
Task BTask BTask BTask B

XXXX1111 XXXX2222

Stim2Stim2Stim2Stim2

Stim1Stim1Stim1Stim1

Task ATask ATask ATask A Task BTask BTask BTask B

DCMDCMDCMDCM



X1X1X1X1 X2X2X2X2

Stim1Stim1Stim1Stim1

Simulated dataSimulated dataSimulated dataSimulated data

++++++++++++

++++

++++++++++++X1X1X1X1 X2X2X2X2

Stim2Stim2Stim2Stim2
Task ATask ATask ATask A Task BTask BTask BTask B

++++++++++++++++
++++

++++++++++++
Stim 1Stim 1Stim 1Stim 1
Task ATask ATask ATask A

Stim 2Stim 2Stim 2Stim 2
Task ATask ATask ATask A

Stim 1Stim 1Stim 1Stim 1
Task BTask BTask BTask B

Stim 2Stim 2Stim 2Stim 2
Task BTask BTask BTask B

X1X1X1X1

Task ATask ATask ATask A Task ATask ATask ATask A Task BTask BTask BTask B Task BTask BTask BTask B

X2X2X2X2



Stim 1Stim 1Stim 1Stim 1
Task ATask ATask ATask A

Stim 2Stim 2Stim 2Stim 2
Task ATask ATask ATask A

Stim 1Stim 1Stim 1Stim 1
Task BTask BTask BTask B

Stim 2Stim 2Stim 2Stim 2
Task BTask BTask BTask B

XXXX1111

Task ATask ATask ATask A Task ATask ATask ATask A Task BTask BTask BTask B Task BTask BTask BTask B

plus added noise (SNR=1)plus added noise (SNR=1)plus added noise (SNR=1)plus added noise (SNR=1)

XXXX2222

plus added noise (SNR=1)plus added noise (SNR=1)plus added noise (SNR=1)plus added noise (SNR=1)



DCM roadmapDCM roadmapDCM roadmapDCM roadmap

Neuronal 
dynamics

State space 
Model

fMRI data

Bayesian Model 
inversion 

Model

Priors

DCM roadmapDCM roadmapDCM roadmapDCM roadmap

Haemodynamics

State space 
Model

Posterior densities 
of parameters

Model 
comparison

Bayesian Model 
inversion 

Model



So, DCM….So, DCM….So, DCM….So, DCM….

• enables one to infer hidden neuronal processes 

• tries to model the same phenomena as a GLM
– explaining experimentally controlled varianceexplaining experimentally controlled varianceexplaining experimentally controlled varianceexplaining experimentally controlled variance

– based on connectivity and its modulation

• allows one to test mechanistic hypotheses • allows one to test mechanistic hypotheses 

• is informed by anatomical and physiological principles.

• uses a Bayesian framework to estimate model parameters

• is a generic approach to modeling experimentally perturbed dynamic systems.

– provides an observation model for neuroimaging data, e.g. fMRI, M/EEG

– DCM is not model or modality specific (Models will change and the method extended to 
other modalities e.g. ERPs)

So, DCM….So, DCM….So, DCM….So, DCM….

infer hidden neuronal processes from fMRI data

tries to model the same phenomena as a GLM
explaining experimentally controlled varianceexplaining experimentally controlled varianceexplaining experimentally controlled varianceexplaining experimentally controlled variance in local responses

test mechanistic hypotheses about observed effectstest mechanistic hypotheses about observed effects

is informed by anatomical and physiological principles.

to estimate model parameters

is a generic approach to modeling experimentally perturbed dynamic systems.

provides an observation model for neuroimaging data, e.g. fMRI, M/EEG

(Models will change and the method extended to 



Some useful referencesSome useful referencesSome useful referencesSome useful references
• The first DCM paper: Dynamic Causal Modelling (2003).  Friston et al. 

NeuroImage 19:1273-1302. 

• Physiological validation of DCM for fMRI:
functional MRI: an electrophysiological validation (2008). David et al. 
Biol. 6 2683–2697

• Hemodynamic model: Comparing hemodynamic models with DCM (2007). 
Stephan et al. NeuroImage 38:387-401Stephan et al. NeuroImage 38:387-401

• Nonlinear DCMs: Nonlinear Dynamic Causal Models for FMRI (2008). Stephan 
et al. NeuroImage 42:649-662

• Two-state model: Dynamic causal modelling for fMRI: A two
(2008). Marreiros et al. NeuroImage 39:269

• Group Bayesian model comparison:
studies (2009). Stephan et al. NeuroImage 

• 10 Simple Rules for DCM (2010). Stephan et al

Some useful referencesSome useful referencesSome useful referencesSome useful references
Dynamic Causal Modelling (2003).  Friston et al. 

Physiological validation of DCM for fMRI: Identifying neural drivers with 
functional MRI: an electrophysiological validation (2008). David et al. PLoS 

Comparing hemodynamic models with DCM (2007). 
401401

Nonlinear Dynamic Causal Models for FMRI (2008). Stephan 

Dynamic causal modelling for fMRI: A two-state model 
39:269-278

Bayesian model selection for group 
NeuroImage 46:1004-10174

(2010). Stephan et al. NeuroImage 52.



Thank youThank youThank youThank youThank youThank youThank youThank you



Time to do a DCM!Time to do a DCM!Time to do a DCM!Time to do a DCM!Time to do a DCM!Time to do a DCM!Time to do a DCM!Time to do a DCM!



Dynamic Causal Modelling
PRACTICAL

Andre Marreiros

Functional Imaging Laboratory (FIL)
Wellcome Trust Centre for NeuroimagingWellcome Trust Centre for Neuroimaging
University College London

Hanneke den Ouden

Donders Centre for Cognitive Neuroimaging
Radboud University Nijmegen

Dynamic Causal Modelling
PRACTICAL

SPM Course, London
13-15 May 2010

Donders Centre for Cognitive Neuroimaging



DCM – Attention to Motion
Paradigm Stimuli 250 radially moving dots at 4.7 degrees/s

Pre-Scanning
5 x 30s trials with 5 speed changes (reducing to 1%)
Task - detect change in radial velocity

Scanning (no speed changes)
F A F N F A F N S ….

Attention to Motion in the visual system

Parameters - blocks of 10 scans 
- 360 scans total
- TR = 3.22 seconds

F A F N F A F N S ….
F - fixation 
S - observe static dots
N - observe moving dots
A - attend moving dots

Attention to Motion
250 radially moving dots at 4.7 degrees/s

5 x 30s trials with 5 speed changes (reducing to 1%)
detect change in radial velocity

(no speed changes)
F A F N F A F N S ….

Attention to Motion in the visual system

blocks of 10 scans 
360 scans total
TR = 3.22 seconds

F A F N F A F N S ….
fixation 
observe static dots + photic
observe moving dots + motion
attend moving dots + attention



Results

V5+V5+V5+V5+

SPCSPCSPCSPC
V3AV3AV3AV3A

Attention to Motion in the visual system

Paradigm

Büchel & Friston 1997, Cereb. Cortex
Büchel et al.

Attention 

- fixation only
- observe static dots + photic � V1
- observe moving dots + motion � V5
- task on moving dots + attention � V5 + parietal cortex

Results

SPCSPCSPCSPC

Attention to Motion in the visual system

chel & Friston 1997, Cereb. Cortex
chel et al. 1998, Brain

Attention – No attention

V5 + parietal cortex



SPCSPCSPCSPCPhotic Photic

Model 1Model 1Model 1Model 1
attentional modulation
of V1→V5: forward

Model 2Model 2Model 2Model 2
attentional modulation
of SPC→V5: backward

DCM: comparison of 2 models

V1V1V1V1

V5V5V5V5

Motion
Attention

Photic

Bayesian model selection: Which model is optimal?Bayesian model selection: Which model is optimal?Bayesian model selection: Which model is optimal?Bayesian model selection: Which model is optimal?

SPCSPCSPCSPCPhotic
Attention

Model 2Model 2Model 2Model 2
attentional modulation
of SPC→V5: backward

DCM: comparison of 2 models

V1V1V1V1

V5V5V5V5

SPCSPCSPCSPC

Motion

Photic

Bayesian model selection: Which model is optimal?Bayesian model selection: Which model is optimal?Bayesian model selection: Which model is optimal?Bayesian model selection: Which model is optimal?



Ingredients for a DCM

Specific hypothesis/questionSpecific hypothesis/questionSpecific hypothesis/questionSpecific hypothesis/question

Model: Model: Model: Model: 

Timeseries: Timeseries: Timeseries: Timeseries: 

Inputs: Inputs: Inputs: Inputs: 

Attention to Motion in the visual system

Paradigm

Inputs: Inputs: Inputs: Inputs: 

V1V1V1V1

Motion

Photic

Attention

Model 1
attentional modulation
of V1→V5: forward

Ingredients for a DCM

Specific hypothesis/questionSpecific hypothesis/questionSpecific hypothesis/questionSpecific hypothesis/question

based on hypothesisbased on hypothesisbased on hypothesisbased on hypothesis

Timeseries: Timeseries: Timeseries: Timeseries: from the SPMfrom the SPMfrom the SPMfrom the SPM

from design matrixfrom design matrixfrom design matrixfrom design matrix

Attention to Motion in the visual system

from design matrixfrom design matrixfrom design matrixfrom design matrix

V5V5V5V5

SPCSPCSPCSPC

V1V1V1V1

V5V5V5V5

SPCSPCSPCSPC

Motion

Photic
Attention

attentional modulation
of V1→V5: forward

Model 2
attentional modulation
of SPC→V5: backward



DCM – GUI basic steps

1 – Extract the time series (from all regions of interest)

2 – Specify the model

Attention to Motion in the visual system

3 – Estimate the model

4 – Review the estimated model

5 – Repeat steps 2 and 3 for all models in model space

6 – Compare models

Extract the time series (from all regions of interest)

Attention to Motion in the visual system

Repeat steps 2 and 3 for all models in model space


