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U1 P1 U3U2 P2

Data

Model

P = Pleasant
U = Unpleasant

Block/epoch designs examine responses to series of similar stimuli

U1 U2 U3 P1 P2 P3

Event-related designs account for response to each single stimulus

~4s

Block/epoch designs vs event-related designs



Advantages of event-related fMRI

 1. Randomised trial order



Blocked designs may trigger expectations and cognitive sets

…
Pleasant (P)Unpleasant (U)

efMRI: Randomised trial order

Intermixed designs can minimise this by stimulus randomisation

… … ………

Unpleasant (U) Unpleasant (U) Unpleasant (U)Pleasant (P) Pleasant (P)



1. Randomised trials order

2. Post-hoc subjective classification of trials

Advantages of event-related fMRI



Gonsalves & Paller (2000) Nature Neuroscience

Items with wrong memory of picture („hat“) were associated with

more occipital activity at encoding than items with correct rejection („brain“)

„was shown as 
picture“

„was not shown 
as picture“

Participant 
response:

efMRI: Post-hoc classification of trials



1. Randomised trials order

2. Post-hoc subjective classification of trials

3. Some events can only be indicated by participant

Advantages of event-related fMRI



efMRI: Online event definition



1. Randomised trials order

2. Post-hoc subjective classification of trials

3. Some events can only be indicated by participant

4. Some events cannot be blocked due to stimulus context

Advantages of event-related fMRI



…
time

Oddball

efMRI: Stimulus context



1. Randomised trials order

2. Post-hoc subjective classification of trials

3. Some events can only be indicated by participant

4. Some events cannot be blocked due to stimulus context

5. More accurate model even for epoch/block designs?

Advantages of event-related fMRI



“Event” model may capture state-item interactions (with longer SOAs)

“Epoch” model assumes constant neural processes throughout block

Data
Model

P = Pleasant
U = Unpleasant

U1 U2 U3 P1 P2 P3

U1 U2 U3 P1 P2 P3

“Event” model of block design



Convolved 
with HRF

=>

Series of events
Delta

functions

“Classic” 
Boxcar 
function

    Sustained epochDesigns can be blocked or intermixed, 
BUT models for blocked designs can be   
epoch- or event-related

Epochs are periods of sustained  
stimulation (e.g, box-car functions)
Events are impulses (delta-functions)

Near-identical regressors can be created 
by 1) sustained epochs, 2) rapid series of 
events (SOAs<~3s)

In SPM8, all conditions are specified in 
terms of their 1) onsets and 2) durations
   … epochs: variable or constant duration
   … events:  zero duration

Modeling block designs: Epochs vs events



β=3 β=5

β=9β=11

Rate = 1/4s Rate = 1/2s

Modeling block designs: Epochs vs events

• Blocks of trials can be modeled as boxcars 
or runs of events

• BUT: interpretation of the parameter 
estimates may differ

• Consider an experiment presenting words at 
different rates in different blocks:

‣ An “epoch” model will estimate parameter 
that increases with rate, because the 
parameter reflects response per block

‣ An “event” model may estimate parameter 
that decreases with rate, because the 
parameter reflects response per word



Disadvatages of intermixed designs

1. Less efficient for detecting effects than blocked designs  
(see later…) 

2. Some psychological processes have to/may be better blocked  
(e.g., if difficult to switch between states, or to reduce surprise effects)
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Brief
Stimulus

Undershoot

Initial
Undershoot

Peak

BOLD impulse response

• Function of blood oxygenation, flow, 
volume 

• Peak (max. oxygenation) 4-6s 
poststimulus; baseline after 20-30s

• Initial undershoot can be observed 

• Similar across V1, A1, S1…

• … but possible differences across: 
- other regions   
- individuals    



Brief
Stimulus

Undershoot

Initial
Undershoot

Peak

BOLD impulse response

• Early event-related fMRI studies used 
a long Stimulus Onset Asynchrony 
(SOA) to allow BOLD response to 
return to baseline

• However, overlap between 
successive responses at short SOAs 
can be accommodated if the BOLD 
response is explicitly modeled, 
particularly if responses are assumed 
to superpose linearly

• Short SOAs are more sensitive; see 
later 



  GLM for a single voxel:

     y(t)  = u(t) ⊗  h(τ) + ε(t)

  u(t) = neural causes (stimulus train)

     u(t) = ∑ δ (t - nT)

  h(τ) = hemodynamic (BOLD) response

     h(τ) = ∑  ßi  fi (τ)

  fi(τ) = temporal basis functions

     y(t)  = ∑ ∑  ßi  fi (t - nT)  + ε(t)

     y     =          X ß              +  ε

Design 
Matrix

convolution

T  2T  3T ...

u(t) h(τ)=∑  ßi  fi (τ)

sampled each scan

General Linear (Convolution) Model



Stimulus
every 20s

SPM{F}

0          time {secs}        30

Sampled every TR = 1.7s 
Design matrix, X

[x(t)⊗ƒ1(τ) | x(t)⊗ƒ2(τ) |...]
…

Gamma functions ƒi(τ) of  
peristimulus time τ
(Orthogonalised)

General Linear Model in SPM
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Temporal basis functionsTemporal basis functions



• Fourier Set
- Windowed sines & cosines
- Any shape (up to frequency limit)
- Inference via F-test

• Finite Impulse Response
- Mini “timebins” (selective averaging)
- Any shape (up to bin-width)
- Inference via F-test

Temporal basis functions



• Fourier Set / FIR
- Any shape (up to frequency limit / bin width)
- Inference via F-test

• Gamma Functions
- Bounded, asymmetrical (like BOLD)
- Set of different lags
- Inference via F-test

• “Informed” Basis Set
- Best guess of canonical BOLD response 
- Variability captured by Taylor expansion  
- “Magnitude” inferences via t-test…?

Temporal basis functions



Canonical

Informed basis set

• Canonical HRF (2 gamma functions)Canonical



Canonical

Informed basis set

• Canonical HRF (2 gamma functions)

 plus Multivariate Taylor expansion in:
- time (Temporal Derivative)

Canonical
Temporal



Canonical

Informed basis set

Canonical
Temporal

• Canonical HRF (2 gamma functions)

 plus Multivariate Taylor expansion in:
- time (Temporal Derivative)



Canonical

Informed basis set

• Canonical HRF (2 gamma functions)

 plus Multivariate Taylor expansion in:
- time (Temporal Derivative)
- width (Dispersion Derivative)

Canonical
Temporal
Dispersion



Canonical

Informed basis set

• Canonical HRF (2 gamma functions)

 plus Multivariate Taylor expansion in:
- time (Temporal Derivative)
- width (Dispersion Derivative)

Canonical
Temporal
Dispersion



Canonical

Informed basis set

• “Latency” inferences via tests 
on ratio of derivative : 
canonical parameters

• “Magnitude” inferences via 
t-test on canonical 
parameters (providing 
canonical is a reasonable 
fit)

Canonical
Temporal
Dispersion

• Canonical HRF (2 gamma functions)

 plus Multivariate Taylor expansion in:
- time (Temporal Derivative)
- width (Dispersion Derivative)



+ FIR+ Dispersion+ TemporalCanonical

… canonical + temporal + dispersion derivatives appear sufficient to capture most activity
… may not be true for more complex trials (e.g. stimulus-prolonged delay (>~2 s)-response)
… but then such trials better modelled with separate neural components (i.e., activity no  
 longer delta function) + constrained HRF  

In this example (rapid motor response to faces, Henson et al, 2001)…

Which temporal basis set?
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Timing issues: Sampling

Scans TR=4s
• Typical TR for 60 slice EPI at 3 mm 

spacing is ~ 3-4s



Timing issues: Sampling

Scans TR=4s
• Typical TR for 60 slice EPI at 3 mm 

spacing is ~ 3-4s

• Sampling at [0,4,8,12…] post- stimulus 
may miss peak signal

Stimulus (synchronous) SOA=8s

Sampling rate=4s



Timing issues: Sampling

Scans TR=4s
• Typical TR for 60 slice EPI at 3 mm 

spacing is ~ 3-4s

• Sampling at [0,4,8,12…] post- stimulus 
may miss peak signal

• Higher effective sampling by: 
   1.  Asynchrony; e.g., SOA=1.5TR
   2. Random Jitter; e.g., SOA=(2±0.5)TR

• Better response characterisation 

Stimulus (random jitter)

Sampling rate=2s



x2 x3

T=16, TR=2s

Scan0 1

o

T0=9 o
T0=16

T1 = 0 s

T16 = 2 s

Timing issues: Slice Timing



Bottom SliceTop Slice

SPM{t} SPM{t}

TR=3s

Interpolated

SPM{t}

Derivative

SPM{F}

Timing issues: Slice Timing

“Slice-timing Problem”:
‣ Slices acquired at different times, yet 

model is the same for all slices

‣ different results (using canonical HRF) for 
different reference slices

‣ (slightly less problematic if middle slice is 
selected as reference, and with short TRs)

Solutions:
1. Temporal interpolation of data 

… but less good for longer TRs

2. More general basis set (e.g., with temporal derivatives) 
… but inferences via F-test
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Design efficiency

• HRF can be viewed as a filter 
(Josephs & Henson, 1999)

• We want to maximise the signal 
passed by this filter

• Dominant frequency of canonical HRF 
is ~0.04 Hz

➡ The most efficient design is a 
sinusoidal modulation of neural 
activity with period ~24s
(e.g., boxcar with 12s on/ 12s off)

      



⊗ =

× =

A very “efficient” design!

Stimulus (“Neural”) HRF Predicted Data

Sinusoidal modulation, f = 1/33



=

=

Blocked-epoch (with small SOA) quite “efficient”

⊗

×

Blocked, epoch = 20 sec

Stimulus (“Neural”) HRF Predicted Data



× =

⊗

“Effective HRF” (after highpass filtering)
(Josephs & Henson, 1999)

Very ineffective: Don’t have long (>60s) blocks!

=

Blocked (80s), SOAmin=4s, highpass filter = 1/120s

Stimulus (“Neural”) HRF Predicted Data



⊗ =

× =

Randomised design spreads power over frequencies

Stimulus (“Neural”) HRF Predicted Data

Randomised, SOAmin=4s, highpass filter = 1/120s



Design efficiency

• T-statistic for a given contrast: T = cTb / var(cTb)

• For maximum T,  we want maximum precision and hence 
  minimum standard error of contrast estimates (var(cTb))  

• Var(cTb) = sqrt(σ2cT(XTX)-1c)     (i.i.d)

• If we assume that noise variance (σ2) is unaffected by changes in              
  X, then our precision for given parameters is proportional  to the 
  design efficiency: e(c,X) =  { cT (XTX)-1 c }-1

➡ We can influence e (a priori) by the spacing and sequencing of    
epochs/events in our design matrix

➡ e is specific for a given contrast!



Blocked designs most efficient! (with small SOAmin)

Design efficiency: Trial spacing

• Design parametrised by:

- SOAmin   Minimum SOA

-  p(t)        Probability of event 
               at each SOAmin 

• Deterministic 
p(t)=1 iff t=nSOAmin

• Stationary stochastic   
p(t)=constant

• Dynamic stochastic
p(t) varies (e.g., blocked)



0

22.5

45.0

67.5

90.0

Block Dyn stoch    Randomised

Design efficiency: Trial spacing

3 sessions with 128 scans
Faces, scrambled faces
SOA always 2.97 s
Cycle length 24 s

e

• However, block designs are often not 
advisable due to interpretative 
difficulties (see before)

• Event trains may then be constructed 
by modulating the event probabilities 
in a dynamic stochastic fashion

• This can result in intermediate levels 
of efficiency



Differential Effect (A-B)

Common Effect (A+B)

Design efficiency: Trial sequencing

• Design parametrised by:
 SOAmin   Minimum SOA

 pi(h)       Probability of event-type i given 
               history h of last m events

• With n event-types pi(h) is a 
n x n Transition Matrix

• Example: Randomised AB

      A  B 
A 0.5 0.5 

 B 0.5 0.5

 => ABBBABAABABAAA...



Alternating (A-B)

Permuted (A-B)

• Example: Permuted AB

      A B
  AA 0            1  
AB 0.5 0.5 
BA 0.5 0.5
BB 1           0

  => ABBAABABABBA...

Design efficiency: Trial sequencing

• Example: Alternating AB

                      A B 
          A 0 1
         B 1 0

  => ABABABABABAB...



Null Events (A+B)

Null Events (A-B)

Design efficiency: Trial sequencing

• Example: Null events

        A   B
  A  0.33 0.33
B    0.33 0.33

 
=> AB-BAA--B---ABB...

• Efficient for differential and 
main effects at short SOA

• Equivalent to stochastic SOA 
(Null Event like third 
unmodelled event-type) 



Design efficiency: Conclusions

‣ Optimal design for one contrast may not be optimal for another 

‣ Blocked designs generally most efficient (with short SOAs, given optimal block 
length is not exceeded)

‣ However, psychological efficiency often dictates intermixed designs, and often 
also sets limits on SOAs

‣ With randomised designs, optimal SOA for differential effect (A-B) is minimal 
SOA (>2 seconds, and assuming no saturation), whereas optimal SOA for main 
effect (A+B) is 16-20s

‣ Inclusion of null events improves efficiency for main effect at short SOAs (at 
cost of efficiency for differential effects)

‣ If order constrained, intermediate SOAs (5-20s) can be optimal        

‣ If SOA constrained, pseudorandomised designs can be optimal 
(but may introduce context-sensitivity)


