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Bayesian paradigm
probability theory: basics

Degree of plausibility desiderata:

- should be represented using real numbers

- should conform with intuition
- should be consistent

* normalization:

» marginalization:

 conditioning :
(Bayes rule)

(D1)
(D2)
(D3)

ZP

P(b)= ZP(a,b)

Pa,b)= Plalp) P(b)
=P(b‘a)P(a



Bayesian paradigm

deriving the likelihood function




Bayesian paradigm

likelihood, priors and the model evidence

Likelinood: — p(¥]@,m)
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Bayesian paradigm

forward and inverse problems

forward problem

— -y,

p(y[$.m)

L likelihood

posterior distribution

p(3]y,m)
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inverse problem
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Bayesian paradigm

model comparison

Principle of parsimony :
« plurality should not be assumed without necessity »
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Model evidence:
m) = p( )

“Occam’s razor” :
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Hierarchical models

principle
: inference
p(ﬁz‘ﬁj,m) 4
p(gl ‘9 m)
V
p(y‘@l,,m)
v

causality



Hierarchical models
directed acyclic graphs (DAGS)




Frequentist versus Bayesian inference

a (quick) note on hypothesis testing
- define the null, e.g.: H,:0=0

p(t[H,)

A

P(t>t*|Ho)

> t=t(Y)
 estimate parameters (obtain test stat.)
 apply decision rule, i.e.:

if P(t >t*|Ho) <a then reject HO

classical (null) hypothesis testing
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2 Notes on Bayesian inference

2.1 Variational methods (ReML, EM, VB)
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Variational methods
VB / EM/ ReML

In p(}»"ﬁ‘?) = <111 p(é?, % I‘?‘?)>q +S(q)+D,, (q (9);;}(9‘}; m))

i &

free enégy Flq)

— VB : maximize the free energy F(q) w.r.t. the approximate posterior q(6)
under some (e.g., mean field, Laplace) simplifying constraint




Family-level inference

trading inference resolution against statistical power

model selection error risk:

P(m,|y) = 0.04 P(m,ly) = 0.25
P (e :1|y):1—mmax P(m|y)
P(m,|y) = 0.01 P(m,ly) = 0.7

ONNC



Family-level inference

trading inference resolution against statistical power

P(m,ly) = 0.04

P(m,|y) = 0.01

P(m,ly) = 0.25

P(f,ly) = 0.05

P(f,ly) = 0.95

model selection error risk:

P(e:1|y):1—mmax P(m|y)

=0.3
|

family inference

(pool statistical evidence)

I
P(fly)=2.P(mly)

me f

P(e=1|y):1—mfaxP(f|y)

=0.05



Group-level model comparison

preliminary: Polya’s urn

{mi =1 — i marble is blue

m =0 — i"" marble is purple

I = proportion of blue marbles in the urn

— (binomial) probability of drawing a set of n marbles:

p(mir)= Hf

Thus, our belief about the proportion of blue marbles is:

p(r)ecl

p(r|m)ocp(r)li[rmi(l—r)l_mi = E[r|m]=%§mi



Group-level model comparison

what if we are colour blind?

At least, we can measure how likely is the It subject’s data under each model!

o o - ® --- @
p(v:|m) p(y,|m,) p(yi|m;) p(¥x[m,)

p(r.mly) e p(r) [T p(vi|m ) p(mr)
i=1
Our belief about the proportion of models is:

p(rly)=2_p(r.mly)

Exceedance probability: @ = P(l'k > Tk |Y)
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3 SPM applications

3.1 aMRI segmentation

3.2 Decoding of brain images

3.3 Model-based fMRI analysis (with spatial priors)
3.4 Dynamic causal modelling



segmentation posterior probability dynamic causal multivariate
and normalisation maps (PPMs) modelling decoding
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aMRI| segmentation

mixture of Gaussians (MoG) model

class variances

V histogram
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it voxel
value frequencies
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Decoding of brain images

recognizing brain states from fMRI

fixation cross

pace
response

log-evidence of X-Y sparse mappings:
effect of lateralization

|
left & right

left right null
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log-evidence of X-Y bilateral mappings:
effect of spatial deployment
sparse compact  smooth support null



fMRI time series analysis

spatial priors and model comparison

PPM: regions best explained
by short-term memory model

short-term memory
design matrix (X)

1]
21-8|2
1(-8|20-8 1
21-8|2
1
prior variance
of GLM coeff
PPM: regions best explained
prior variance AR coeff by long-term memory model
of data noise (correlated noise) long-term memory

design matrix (X)

o GLM coeff o

fMRI time series




Dynamic Causal Modelling

network structure identification

m, m, m; m,

attention attention attention

attention

estimated
effective synaptic strengths
for best model (m,)
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models marginal likelihood
15 Inp(y|m)

m1 m2 m3 m4



| thank you for your attention.



A note on statistical significance

lessons from the Neyman-Pearson lemma

* Neyman-Pearson lemma: the likelihood ratio (or Bayes factor) test

_ p(y[H,)

A (v,

> U

is the most powerful test of size o = p(A > U|Ho) to test the null.

» what is the threshold u, above which the Bayes factor test yields a error | rate of 5%?

1 - error |l rate
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ROC analysis
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1

MVB (Bayes factor)
u=1.09, power=56%

CCA (F-statistics)
F=2.20, power=20%



