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A spectacular piece of information
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Does chocolate make you clever?

By Charlotte Pritchard
BBC News

Eating more chocolate improves a nation's chances of producing
Nobel Prize winners - or at least that's what a recent study appears to
suggest. But how much chocolate do Nobel laureates eat, and how
could any such link be explained?



A spectacular piece of information

Messerli, F. H. (2012). Chocolate Consumption, Cognitive Function, and Nobel Laureates.

New England Journal of Medicine, 367(16), 1562-1564.
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Figure 1. Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel
Laureates per 10 Million Population.
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So will I win the Nobel prize if I eat lots of chocolate?

This is a question referring to uncertain quantities. Like almost all scientific
questions, it cannot be answered by deductive logic. Nonetheless, quantitative

answers can be given - but they can only be given in terms of probabilities.

Our question here can be rephrased in terms of a conditional probability:

p(Nobel | lots of chocolate) =?

To answer it, we have to learn to calculate such quantities. The tool for this is

Bayesian inference.



«Bayesian» = logical
and
logical = probabilistic

«The actual science of logic is conversant at present only with things either
certain, impossible, or entirely doubtful, none of which (fortunately) we have to
reason on. Therefore the true logic for this world is the calculus of probabilities,
which takes account of the magnitude of the probability which is, or ought to

be, in a reasonable man's mind.»

— James Clerk Maxwell, 1850



«Bayesian» = logical
and
logical = probabilistic

But in what sense is probabilistic reasoning (i.e., reasoning about uncertain

quantities according to the rules of probability theory) «logical»?

R. T. Cox showed in 1946 that the rules of probability theory can be derived

from three basic desiderata:
1. Representation of degrees of plausibility by real numbers
2. Qualitative correspondence with common sense (in a well-defined sense)

3. Consistency



The rules of probability

By mathematical proof (i.e., by deductive reasoning) the three desiderata as set out by

Cox imply the rules of probability (i.e., the rules of inductive reasoning).

This means that anyone who accepts the desiderata must accept the following rules:

1. Y.p(a)=1 (Normalization)
2. p(b) =Y,p(ab) (Marginalization - also called the sum rule)

3. p(a,b) =p(alb)p(b) = p(bla)p(a) (Conditioning - also called the product rule)

«Probability theory is nothing but common sense reduced to calculation.»

— Pierre-Simon Laplace, 1819



Conditional probabilities

The probability of a given b is denoted by
p(alb).

In general, this is different from the probability of a alone (the marginal probability of

a), as we can see by applying the sum and product rules:

p@ = p(ab) = ) palb)p®)
b b

Because of the product rule, we also have the following rule (Bayes’ theorem) for

going from p(a|b) to p(b|a):

p(alb)p(d)  p(alb)p(b)

POla) =y = %, p@b)p (B




The chocolate example

In our example, it is immediately clear that P(Nobel|chocolate) is very different from
P(chocolate|Nobel). While the first is hopeless to determine directly, the second is
much easier to find out: ask Nobel laureates how much chocolate they eat. Once we

know that, we can use Bayes’ theorem: likelihood

@Wﬂ) prior
(Nobel|chocolate \wJ
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Inference on the quantities of interest in neuroimaging studies has exactly the same

general structure.



Inference in SPM

forward problem

p(dly,m)

_—ea =

inverse problem
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Inference in SPM

Likelihood: p(yl9,m)

Prior: p(¥|m)

p(y[9, m)p(I|m)
Bayes’ theorem: p(d|y,m) =
4 PR p(ylm)
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A simple example of Bayesian inference
(adapted from Jaynes (1976))

Two manufacturers, A and B, deliver the same kind of components that turn out to

have the following lifetimes (in hours):

A: 59.5814 B: 48.8506
] 37.3953 48.7296
47.5956 59.1971
40.5607 51.8895
48.6468
36.2789
31.5110
31.3606
45.6517

Assuming prices are comparable, from which manufacturer would you buy?
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A simple example of Bayesian inference

How do we compare such samples?
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A simple example of Bayesian inference

What next?

[s this satisfactory?
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A simple example of Bayesian inference

The procedure in brief:

* Determine your question of interest («<What is the probability that...?»)
» Specify your model (likelihood and prior)

* C(Calculate the full posterior using Bayes’ theorem

* [Pass to the uninformative limit in the parameters of your prior]

* Integrate out any nuisance parameters

* Askyour question of interest of the posterior

All you need is the rules of probability theory.

(Ok, sometimes you’ll encounter a nasty integral - but that’s a technical difficulty,

not a conceptual one).
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A simple example of Bayesian inference

The question:

What is the probability that the components from manufacturer B

have a longer lifetime than those from manufacturer A?

More specifically: given how much more expensive they are, how

much longer do I require the components from B to live.

Example of a decision rule: if the components from B live 3 hours
longer than those from A with a probability of at least 80%, I will

choose those from B.
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A simple example of Bayesian inference

The model (bear with me, this will turn out to be simple):

* Likelihood (Gaussian):

n

p(xdled = [ (=)

i=1

N[ =

exp (— % (x; — .U)Z)

* Prior (Gaussian-gamma):

p(,u, /1|/J.0, KoQo, bO) = N(/J'LUO; (KOA)_l)Gam(AlaOJ bO)
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A simple example of Bayesian inference

The posterior (Gaussian-gamma):

p(u, Alfxi}) = N (uluy, (, )1 Gam(Aap, by)

Parameter updates:

n
X — , K, = Ky + n, a, = agp + =
K0+Tl( lio) n 0 n 0 2

Un = Uo T+

n
b‘l’l =b0 +—(52+

Ko  _
) — (- 10)?)

Ko

with

i=1 i=1
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A simple example of Bayesian inference

The limit for which the prior becomes uninformative:

Forky = 0,ay, = 0, by = 0, the updates reduce to:

n 2

_ n
Uy =X K,=n anzz bnzzs
* As promised, this is really simple: all you need is n, the number

of datapoints; x, their mean; and s2, their variance.

e This means that only the data influence the posterior and all influence from the
parameters of the prior has been eliminated. This is normally not what you want.
The prior contains important information that regularizes your inferences. Often,

inference only works with informative priors.

* In any case, the uninformative limit should only ever be taken after the calculation

of the posterior using a proper prior.
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A simple example of Bayesian inference

Integrating out the nuisance parameter A gives rise to a t-

distribution:

10 20 30 40 50 60 70 80



A simple example of Bayesian inference

The joint posterior p(uy, uglixi}a, {x,}g) is simply the product
of our two independent posteriors p(uul{x;},) and

p(ug|{x,}g). It will now give us the answer to our question:

co

p(up — g >3) = f dps pQualixi}a) dug p(upl{xy}g) = 0.9501

—00 Ua+3

Note that the t-test told us that there was «no significant
difference» even though there is a >95% probability that the

parts from B will last at least 3 hours longer than those from A.
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Bayesian inference

The procedure in brief:

* Determine your question of interest («<What is the probability that...?»)
» Specify your model (likelihood and prior)

* C(Calculate the full posterior using Bayes’ theorem

* [Pass to the uninformative limit in the parameters of your prior]

* Integrate out any nuisance parameters

* Askyour question of interest of the posterior

All you need is the rules of probability theory.
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Frequentist (or: orthodox, classical) versus
Bayesian inference: hypothesis testing

Classical

e define the null, e.g.: Hy;:9 =0

p(t|Ho)

A

p(t > t*|Hy)

: *t = t(Y
- (¥)

* estimate parameters (obtain test stat. t*)
* apply decision rule, i.e.:

if p(t >t*|Hy) < a then reject H,

Bayesian

* invert model (obtain posterior pdf)

p(d|y)

A

p(Hyly)

"9

* define the null, e.g.: Hy:9 > 9,
* apply decision rule, i.e.:

if p(Hyly) = a then accept Hy
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Model comparison: general principles

* Principle of parsimony: «plurality should not be assumed without necessity»

« Automatically enforced by Bayesian model comparison

Model evidence:

% p(ylm) = j p(y 19, m)p(8]m)dd

+ observations | | ~ exp(accuracy — complexity)
~— Oth order
—— 1st order
— 2nd order

=)

y

I “Occam’s razor” :

ﬂ too simple

1
: | +
+
I / |
‘\

+ observations
—— Oth order 1 " gl
—— 1st order \ just right
— 2nd order | '
' : too complex

-3 -2 -1 0 1 2 3 Y space of all data sets

model evidence p(y|m)
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Model comparison: negative variational free energy F

log — model evidence :=1log p(y|m)

- @logjp(y,ﬁlm)dﬁ
sum rule
p(y,9|m)
@logjq(ﬁ) q(19) dd a lower bound on the

q(9) log-model evidence

multiply bylz/% p(y,9|m)
. @Jq(ﬁ)log o) dv /

ensen’s inequalit ] . .
] quatity =: F = negative variational free energy

_ | p(y,9|m)
F=| q(9) log q(9) dd R
[ p(y[9, m)p@m) | R
product rule
— jCI(ﬁ) log p(y|9, m) dI _@Q(ﬁ)»P(ﬁlm)l

Comp'lexity

Accuracy (expectéd log—likelihood)
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Model comparison: F in relation to Bayes factors, AIC, BIC

= exp(logp(y|lm;) —logp(y|my))

Bayes factor

Bayes factor :=

p(ylml)zex <1 p(ylm 1)>
p(y|my) P p(yl 0)

~ exp(F, — F,) Posterjor odds Prior odds

[Meaning of the Bayes factor:

= [ a@)10gp(y18,m) a9 - KLLa(),p(3Im)]

= Accuracy — Complexity

AIC := Accuracy _@/ Number of parameters

p «— Number of data points
BIC := Accuracy — Elo
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A note on informative priors

Any model consists of two parts: likelihood and prior.

The choice of likelihood requires as much justification as the choice of prior because
it is just as «subjective» as that of the prior.

The data never speak for themselves. They only acquire meaning when seen through
the lens of a model. However, this does not mean that all is subjective because
models differ in their validity.

In this light, the widespread concern that informative priors might bias results
(while the form of the likelihood is taken as a matter of course requiring no
justification) is misplaced.

Informative priors are an important tool and their use can be justified by

establishing the validity (face, construct, and predictive) of the resulting model as
well as by model comparison.
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A note on uninformative priors

Using a flat or «uninformative» prior doesn’t make you more «data-driven» than
anybody else. It’s a choice that requires just as much justification as any other.

For example, if you're studying a small effect in a noisy setting, using a flat prior
means assigning the same prior probability mass to the interval covering effect

sizes -1 to +1 as to that covering effect sizes +999 to +1001.

Far from being unbiased, this amounts to a bias in favor of implausibly large
effect sizes. Using flat priors is asking for a replicability crisis.

One way to address this is to collect enough data to swamp the inappropriate
priors. A cheaper way is to use more appropriate priors.

Disclaimer: if you look at my papers, you will find flat priors.
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Applications of Bayesian inference
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segmentation posterior probability dynamic causal multivariate
and normalisation maps (PPMs) modelling decoding

1

smoothing |—

realignment

|

normalisation

l statistical | ___ Qaussian
: inference field theory

template
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Segmentation (mixture of Gaussians-model)

class variances

ith voxel
value

class
means

V histogram

frequencies

grey matter

white matter




fMRI time series analysis

PPM: regions best explained
by short-term memory model

short-term memory
design matrlx (X)

prior variance
of GLM coeff

images

o
prior variance O AR coeff
of data noise (correlated noise)

GLM coeff @/@ -
PPM: regions best explained

Y by long-term memory model

fMRI time series long-term memory
design matrix (X)




Dynamic causal modeling (DCM)

m, m, mj m,

attention attention attention

attention

estimated
effective synaptic strengths
for best model (m,)

models marginal likelihood

1np(y|m)

stim
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differences in log- model evidences

Model comparison for group studies

lnp(y‘ml)‘lnp(y‘mz) TN

-4t
2 3 4 5 6 7 8 8 10 ~
Y
subjects
Fixed effect Assume all subjects correspond to the same model
Random effect Assume different subjects might correspond to different models
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Thanks
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