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By the end of this talk

 Understand what the multiple comparisons problem is.

 Be familiar with some common approaches.

 Be able to explain Random field theory.
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 Need to avoid cherry-picking. i.e. need an objective 

threshold.

 Need to adjust this threshold depending on how many 

independent tests you do. (e.g. if you do 20 tests with a 

false positive rate of 1/20 .. then expect one peak just 

due to chance).



T test on a single voxel / time point
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Multiple tests in space
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Use of ‘uncorrected’ p-value, α =0.1

Percentage of Null Pixels that are False Positives

If we have 100,000 voxels,

α=0.05  5,000 false positive voxels.

This is clearly undesirable; to correct 

for this we can define a null hypothesis 

for a collection of tests.

signal



Bonferroni correction

Set the test-wise error rate (α) to be a the ideal Family-Wise 

Error rate (FWER) (αFWE) divided by the number of tests.

This correction does not require the tests to be independent but 

becomes very stringent if they are not.

e.g. for five tests choose p<0.01 for each test to control family at p<0.05



Family-Wise Error Rate

False

positive

Use of ‘corrected’ p-value, α =0.1

Use of ‘uncorrected’ p-value, α =0.1

Family-Wise Error rate (FWER) = ‘corrected’ p-value

i.e. p<0.01 corrected, i.e. 1 false positive every 10 experiments



Summary

• Typically we control one test. Set 

threshold such that one in twenty tests we 

will get a false positive (p<0.05).

• Need to set family wise error rate so that 

in one in twenty experiments you will get 

a false positive (p<0.05, corrected).

• Do this by setting a much more 

conservative threshold.



What about data with different topologies 

and smoothness.. 

Smooth time
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Non-parametric inference: permutation tests

5%

5%

 Parametric methods
– Assume distribution of

max statistic under null

hypothesis.

 Nonparametric methods
– Use data to find 

distribution of max statistic

under null hypothesis.

to control FWER



Random Field Theory

A random field : an array of smoothly varying test statistics.

e.g. a slice through a t-statistic brain image.

threshold

Keith Worsley, Karl Friston, Jonathan Taylor, Robert Adler and colleagues



A few holes Many holes Many peaks A few peaks

Smooth Random field

Euler characteristic (EC) at threshold (u) = Number blobs- Number holes



-- EC observed

o EC predicted

Expected Euler 

Characteristic

Gaussian Kinematic formula

Intrinsic volume (depends on 

shape and smoothness of 

space)

Depends on type of test,

dimension and threshold

Number peaks= intrinsic volume * peak density

At high threshold,

EC = number of peaks



Number peaks= intrinsic volume * peak density

Currant bun analogy

Number of currants = volume of bun * currant density 



Number peaks= intrinsic volume * peak density

How do we specify peak (or EC) density



Number peaks=  intrinsic volume * peak density

The EC density - depends on the type of 

random field (t, F, Chi etc ), the dimension of the 

test (2D,3D), and the threshold. i.e. it is data 

independent

See J.E. Taylor, K.J. Worsley. J. Am. Stat. Assoc., 102 (2007), pp. 913–928

Number of currants = bun volume * currant density 

EC density,  ρd(u)

t FX2

Peak densities (as a 

function of threshold) 

for the different fields 

are known



Number peaks= intrinsic volume  *  peak density

Currant bun analogy

Number of currants = bun volume * currant density 



LKC or resel estimates normalize volume

The intrinsic volume (or the number of resels or the Lipschitz-

Killing Curvature) of the two fields is identical



Which field has highest intrinsic volume ?
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N=1000, FWHM= 4
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Expected Euler 

Characteristic

Intrinsic volume

(depends on shape and 

smoothness of space)

Depends only on type

of test and dimension

=2.9 (in this example)

Threshold u

Gaussian Kinematic formula



Expected Euler 

Characteristic

Gaussian Kinematic formula

Intrinsic volume (depends on 

shape and smoothness of 

space)

Depends only on type

of test and dimension
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i.e. we want 

one false 

positive every 

20 realisations 

(FWE=0.05)



Getting FWE threshold

Know intrinsic volume

(10 resels)

0.05

Want only a 1 in 20

Chance of a false positive

Know test (t) and 

dimension (1) so 

can get threshold u

(u
)



Can get correct FWE for any of these..
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If you know where or when (or both) (eg left auditory cortex at t=100ms) 

then you can avoid the multiple comparisons problem.

More powerful inference, simpler message.

If you already know something

Region of interest (ROI)

Defined before you do the experiment



To summarize

Multiple comparisons problem- more tests, more false 

positives.

 Bonferroni correction – simple but conservative

 Random field theory- just like cooking- number of 

currants you would expect by chance.



Conclusions

 Strong prior hypotheses can reduce the multiple 

comparisons problem.

 Random field theory is a way of predicting the number of 

peaks you would expect in a purely random field (without 

signal).

 Can control FWE rate for a space of any dimension and 

shape.
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