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Because of their increased sensitivity to spatially extended signals,

cluster-size tests are widely used to detect changes and activations in

brain images. However, when images are nonstationary, the cluster-size

distribution varies depending on local smoothness. Clusters tend to be

large in smooth regions, resulting in increased false positives, while in

rough regions, clusters tend to be small, resulting in decreased

sensitivity. Worsley et al. proposed a random field theory (RFT)

method that adjusts cluster sizes according to local roughness of images

[Worsley, K.J., 2002. Nonstationary FWHM and its effect on statistical

inference of fMRI data. Presented at the 8th International Conference

on Functional Mapping of the Human Brain, June 2–6, 2002, Sendai,

Japan. Available on CD-ROM in NeuroImage 16 (2) 779–780; Hum.

Brain Mapp. 8 (1999) 98]. In this paper, we implement this method in a

permutation test framework, which requires very few assumptions, is

known to be exact [J. Cereb. Blood Flow Metab. 16 (1996) 7] and is

robust [NeuroImage 20 (2003) 2343]. We compared our method to

stationary permutation, stationary RFT, and nonstationary RFT

methods. Using simulated data, we found that our permutation test

performs well under any setting examined, whereas the nonstationary

RFT test performs well only for smooth images under high df. We also

found that the stationary RFT test becomes anticonservative under

nonstationarity, while both nonstationary RFT and permutation tests

remain valid under nonstationarity. On a real PET data set we found

that, though the nonstationary tests have reduced sensitivity due to

smoothness estimation variability, these tests have better sensitivity for

clusters in rough regions compared to stationary cluster-size tests. We

include a detailed and consolidated description of Worsley nonstation-

ary RFT cluster-size test.
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Introduction

Whether functional or structural, detecting changes in brain

images is a central problem in neuroimaging. Cluster-size tests,

pioneered by Poline and Mazoyer (1993) and Friston et al. (1994),

have been widely used in such investigations because of increased

sensitivity to spatially extended signals, compared to voxel-intensity

tests (Friston et al., 1996; Poline et al., 1997). Different implemen-

tations of cluster-size tests have been developed, including simula-

tion-based tests (Forman et al., 1995; Ledberg et al., 1998; Poline

and Mazoyer, 1993; Roland et al., 1993), random field theory-based

(RFT) tests (Cao and Worsley, 2001; Worsley et al., 1996), and

permutation tests (Holmes et al., 1996; Nichols and Holmes, 2002).

One of the assumptions usually required in a cluster-size test is

stationarity or uniform smoothness. This assumption is crucial

because when it is violated, the sensitivity and the specificity of the

test can depend on local smoothness of images (Worsley et al.,

1999). In smooth regions, clusters tend to be large even in the

absence of true signals, thus resulting in increased false positives.

On the other hand, in rough regions, clusters tend to be small, and

even a true positive cluster may be too small to be detected,

resulting in reduced power. Because of such bias, Ashburner and

Friston (2000) discourage use of cluster-size tests in voxel-based

morphometry (VBM) data that are known to exhibit nonstationary.

Even in a typical BOLD fMRI data set, the stationarity assumption

is questionable (see Fig. 1), yet this assumption is not routinely

assessed, and in our experience, rarely true.

To address this problem associated with nonstationarity, Wors-

ley et al. (1999) suggested adjusting cluster sizes according to the

local smoothness at each voxel. With the RFT framework by Cao

(1999), this approach has been implemented (Worsley, 2002).

However, this test is subject to various random field assumptions:

Images have to be a lattice approximation of a smooth random field,

the cluster defining threshold needs to be sufficiently high, and the

cluster-size distribution is considered to approximately follow a

known parametric form. Though nonstationarity is accounted for,

the test is still restricted by such stringent assumptions.



Fig. 1. Examples of local FWHM images, from a multisubject fMRI study comparing emotional responses between schizophrenics and controls (Taylor et al.,

2003) (left), and from a VBM study comparing gray matter images from AIDS patients and controls (Varhola et al., 2000) (right). In both cases, smoothness is

not uniform, with the VBM data showing dramatic structure in local smoothness.
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Therefore, as an alternative to the nonstationary RFT test, we

propose a nonstationary permutation test. Using Worsley et al.’s

roughness adjusted cluster sizes, we adjust sensitivity of the test

according to image smoothness. Since the permutation cluster-size

test requires few assumptions and it is robust and exact (Hayasaka

and Nichols, 2003), we avoid stringent restrictions of the RFT test.

We validate the nonstationary permutation test by noise image

simulations, both stationary and nonstationary, and compare its

performance to the RFT counterpart. We further validate both

nonstationary tests by applying them to a PET data set and

examine their sensitivity relative to stationary cluster-size tests.

This paper is structured as following: In Methods and materials,

we describe briefly both nonstationary RFT and permutation tests.

Furthermore, we describe the validation of both tests in simulations

and in data analysis. In Results, findings from the simulations and

the data analysis are presented. In Discussion, we examine the

findings from the simulation and draw conclusions.
Methods and materials

Implementation of nonstationary cluster-size tests

Model

We assume that voxel intensities of a brain image can be

expressed as a linear model

Y ðvÞ ¼ XbðvÞ þ rðvÞeðvÞ ð1Þ

where v = (x,y,z) a R3 is an index for voxels, Y(v) = { Y1(v), Y2(v),

. . .,Yn(v)}V is a vector of observed voxel intensities at v from n

scans, X is a known design matrix of size n � p, b(v) is a p-

dimensional vector of unknown parameters, r(v) is an unknown

standard deviation at v, and e(v) = {e1(v), e2(v), . . ., en(v)}V is a

vector of unknown random errors with unit variance. Images are

denoted by omitting the index v, so that, for example, ei denotes the
error image from the ith scan. In this study, we primarily focus on

data whose error images e are uncorrelated across subjects or scans,
such as PET, second-level fMRI, and VBM data.
Let b̂(v) be an unbiased estimate of b(v), then the residuals are

defined as

eðvÞ ¼ Y ðvÞ � X b̂ðvÞ

and the residual variance can be estimated by

r̂2ðvÞ ¼ 1

g
eðvÞVeðvÞ

where g is the degrees of freedom for errors. If ei(v)’s are

independent and identically normally distributed, then the statistic

image T can be calculated as

TðvÞ ¼ cb̂ðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðX VX Þ�1

cVr̂
q

ðvÞ

where c is a row vector expressing the contrast of interest. Based

on the T image, clusters are formed as a set of contiguous voxels

with their T(v) exceeding a fixed cluster defining threshold uc
sharing at least one common edge. For a 3D image, this is known

as the 18 connectivity scheme; in a 3 � 3 � 3 voxel cube, all the

voxels except eight corner voxels are considered connected to the

voxel at the center.

Roughness estimation

For the data described in Eq. (1), the underlying image

roughness is calculated as a variance–covariance matrix of the

spatial partial derivatives of e,

KðvÞ ¼ VarðėðvÞÞ ð2Þ

where ė(v) is a 3 � 1 vector of spatial derivatives, typically

estimated with first-order differences (Kiebel et al., 1999). This

K(v) matrix is related to a widely used measure of smoothness,

full-width at half-maximum (FWHM) of a Gaussian kernel re-

quired to smooth a white noise image to have roughness K,

FWHMðvÞ ¼ ð4log2ÞD=2AKðvÞA�1=ð2DÞ ð3Þ
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where D is the spatial dimensionality of the data. FWHM or jKj
can be considered as a global parameter for the entire image, by

pooling e˙(v) from all the voxels in Eq. (2) assuming stationarity

(Kiebel et al., 1999; Forman et al., 1995), or as a local parameter

FWHM(v) or jK(v)j varying at each voxel (Worsley, 2002; Worsley

et al., 1999). Using FWHM, Worsley et al. (1992) developed a

concept of resolution elements (RESELs) as a sampling element,

which is defined by

RESELs ¼ V

FWHMD
ð4Þ

where V is the search volume (in voxel units). The RESEL, by

expressing the volume relative to its smoothness, is a useful

metric in nonstationary methods. By reducing the search volume

to a single voxel in Eq. (4) and estimating FWHM at each

voxel, the local roughness can be expressed as RESEL per voxel

(RPV) or RESEL density. RESELs depend on K(v) through

jK(v)j1/2, and Worsley et al. (1999) developed an estimator of

jK(v)j1/2 as

AK̂ðvÞA1=2 ¼ ADuðvÞVDuðvÞA1=2 ð5Þ

where u is a normalized residual image defined by

uðvÞ ¼ eðvÞ
ðeðvÞVeðvÞÞ1=2

and Du(v) is its spatial gradient vector in the principal axes’

directions at v computed with the first-order differences. Alter-

natively, using the standardized residuals u*

u*ðgÞ ¼ eðvÞ
1

v
eðvÞVeðvÞ

� �1=2

Eq. (5) can be written as

AK̂ðvÞA1=2 ¼ 1

g
Du*ðvÞVDu*ðvÞ

����
����1=2

showing the estimator to be a determinant of matrices averaged

over scans. Using jK̂(v)j1/2, an estimate of RPV is obtained as,

dRPVðvÞ ¼ ð4ln2Þ�D=2 jK̂ðvÞj1=2 ð6Þ

A more refined estimate of jK(v)ja for any a can be obtained

using bias corrections in Appendix A. These corrections include a

small df correction. The df correction for a = 1/2, as in our RPV

estimate, is 1 and thus not necessary. However, when FWHM is to

be estimated with a = 1/2D as in Eq. (3), the df correction should

be employed.

We assume that the smoothness is the same across subjects

or scans. However, it is possible that, in practice, there is some

intersubject difference in smoothness. Even under such differ-

ence, we have previously found that the permutation test is

more robust compared to RFT methods (Hayasaka and Nichols,

2003).
Cluster sizes under nonstationarity

Once RPV is calculated at each voxel, the roughness-

adjusted cluster-size R (in RESEL units) can be calculated by

simply summing RPV values over voxels within each cluster. In

other words, for cluster C, the cluster size in terms of RESELs

is

R ¼
X
vaC

RPVðvÞ ð7Þ

Worsley et al. (1999) explain that measuring cluster size in

this manner is equivalent to distorting a nonstationary image to

stationarity by adjusting the distance between voxels and mea-

suring the cluster volume in the resulting image. Furthermore, a

new result by Taylor and Adler (2003) shows that the existence

of the warp is no longer necessary and that the random field

results work under almost any form of nonstationarity. Such

distortion stretches rough areas and shrinks smooth areas, so

that on average, the cluster sizes are about the same and

stationarity can be achieved (see Fig. 2 for a visual illustration

of this). An advantage of measuring cluster sizes in RESELs is

the ability to calculate cluster volumes in the distorted or

transformed stationary image without carrying out the actual

distortion.

The true distribution of R is unknown, thus needs to be

approximated by various methods such as RFT or permutations.

As in a stationary cluster-size test, the uncorrected P value, or

the P value for a single cluster, can be obtained from the

approximated null distribution of cluster-size R as the probability

of observing a cluster of certain size or larger. In practice,

multiple clusters could occur at a given threshold, and testing all

the cluster sizes simultaneously using uncorrected P values

creates a multiple comparison problem. For instance, if there

are 20 clusters and each of which is tested at 0.05 significance

level, then, on average, the null hypothesis is rejected at one of

these clusters by chance alone even if there is no signal. To

account for this problem, family-wise error (FWE) correction is

often employed, which controls type I error (false rejection)

rates for all the clusters collectively. The FWE correction is

achieved by calculating P values based on the distribution of the

largest cluster-size Rmax. The rationale for using the distribution

of Rmax, as well as detailed explanation of its implementation, is

found in Holmes et al. (1996) and Hayasaka and Nichols

(2003).

Nonstationary RFT cluster-size test

In the nonstationary RFT cluster-size test for t images (Worsley,

2002; Worsley et al., 1999), the distribution of R is approximated by

RfcB1=2 UD
0

j
D

b¼1
Ub

0
BB@

1
CCA

1=2

ð8Þ

where B is a beta random variable with parameters (1,(g�D)/2),U0

is a v2 random variable with df = g, and Ub’s (b = 1,2,. . .,D) are
independent v2 random variables with df = g + 2 � b (Cao, 1999).

The constant c is chosen so that

E½R	E½L	 ¼ E½N 	 ð9Þ

ge 22 (2004) 676–687



Fig. 2. In a nonstationary image (top left), there is a smooth region at the top left corner and a rough region at the bottom right corner. When thresholded

(bottom left), clusters in a smooth (rough) region tend to be large (small). However, if the smooth (rough) region is shrank (stretched), then the resulting image

(top right) appears to be stationary, and the size of clusters should follow the same distribution anywhere within the image (bottom right).
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where L is the number of clusters and N is the volume (in

RESEL units) above uc. For the search volume Q (RESELs),

E[N] can be found by QPr(T > uc), and for a sufficiently large

search volume and high uc, E[L] = Qq(uc) where q(uc) is the Euler
characteristic (EC) density of a random field thresholded at uc
(Worsley et al., 1996). In practice, the true cluster size in terms of

RESELs R is never known, thus its estimate R̂ is used, which is

obtained by replacing RPV in Eq. (7) by its estimate dRPVin Eq. (6).

R̂ is an estimate, assumed to have the distribution

R̂fR
j
D

a¼1
Va

VD
0

0
BB@

1
CCA

1=2

ð10Þ

where V0 is a v2 random variable with df = g and Va’s (a =

1,2,. . .,D) are independent v2 random variables with df = g � a.

An outline of the derivation of Eq. (10) is found in Appendix B. R̂

is more variable than R since it measures cluster volume using the

noisy dRPV.
Once the uncorrected cluster-size distribution—the distribution

of a single cluster size—is obtained from Eqs. (8) and (10), the
Poisson clumping heuristic (Aldous, 1989 cited in Cao and

Worsley, 2001) is used to compute the distribution of the largest

cluster size

PrðRmax > rÞ ¼ 1� expf�E½L	ð1� FRðrÞÞg ð11Þ

where FR(r) is the cumulative cluster-size distribution from which

uncorrected P values are calculated. This yields FWE-corrected P

values. More details on implementation of the nonstationary RFT

test is found in Appendix B.

Nonstationary permutation cluster-size test

The permutation test is based on the idea of exchangeability.

Under the null hypothesis, exchangeability asserts that data

labels can be permuted without altering the distribution of a

test statistic. In this case, the largest cluster size is used as a

test statistic in order to control the FWE rate (FWER). Permu-

tation allows an empirical distribution of the largest cluster size

to be generated; for each labeling, a statistic image is created

and thresholded, and the largest cluster size is recorded. The

corrected P value is then calculated by comparing the largest

cluster size from the original labeling to this empirical distri-

bution. Under nonstationarity, it is necessary to account for the



Fig. 3. An example of a nonstationary image. The left panel shows its true FWHM. The rough outer layer (FWHM 2.5 voxels) surrounds the middle layer

(FWHM 4.9 voxels), by which encircles the smooth core (FWHM 7.8 voxels). The middle panel shows an actual realization of a nonstationary image with the

above smoothness. The right panel shows the FWHM image estimated from a set of 20 nonstationary images.

Table 1

Different settings for the nonstationary simulations

Primary Smoothing

Outer layer 4.5 4.0 3.0 1.5

Middle layer 4.5 4.5 4.5 4.5

Core 4.5 5.0 6.0 7.5

Secondary Smoothing 2 2 2 2

True Smoothness

Outer layer 4.9 4.5 3.6 2.5

Middle layer 4.9 4.9 4.9 4.9

Core 4.9 5.4 6.3 7.8

The outer layer was set to be rougher than the middle layer, whereas the
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estimation uncertainty in dRPV. In the RFT method, this is done

by Eq. (10), but in our permutation test, this is done implicitly

by calculating dRPV for each permutation.

Besides calculating cluster sizes in terms of RESELs, our test is

the same as the permutation test under stationarity. We used the

MATLAB-based SnPM toolbox1 to implement our test.

Note that this permutation framework is justified only when

error images e are uncorrelated across subjects or scans, as in a

second-level fMRI data set, a PET data set, or a VBM data set. To

apply this method to correlated data, such as a BOLD fMRI time

series, the data must be decorrelated before permutation (Bullmore

et al., 1996, 2001).

Simulation-based validation

To validate our permutation test and to compare its performance

to the nonstationary RFT test, we carried out Monte-Carlo simu-

lations generating t random noise images, both stationary and

nonstationary.

For the stationary t noise simulation, for each realization, two-

groups of 32� 32� 32 Gaussian images (5 and 5, 10 and 10, or 15

and 15) were generated and a two-sample t test statistic image (df =

8, 18, or 28, respectively) was calculated. Our use of a two-sample t

statistic image was motivated by our collaborators’ data of com-

paring controls and patients (Taylor et al., 2003), and the results

should be similar to that of a one-sample test with the same degrees

of freedom. Each Gaussian image in each realization was generated

from a 104 � 104 � 104 white noise image convolved with a

Gaussian smoothing kernel (FWHM 0 (no smoothing), 1.5, 3, 6,

and 12 voxels), and its outer 36 voxels were truncated to avoid

nonstationarity at the edge. The same white noise image was used

for different kernel widths in order to reduce computation time.

For the nonstationary t noise image simulation, for each

realization, a two-sample t test statistics image with df = 18 was

generated from two sets of ten 64 � 64 � 32 nonstationary

Gaussian noise images. Each of these nonstationary Gaussian

images was created from a single 100 � 100 � 68 white noise

image. The white noise image was smoothed with three different

3D Gaussian kernels, producing three images with low, medium,
1 Andrew Holmes and Thomas Nichols, http://www.fil.ion.ucl.ac.uk/

spm/snpm/.
and high smoothness. These images were combined in a way that a

rough outer layer encloses a medium-smoothness middle layer,

which encircles a smooth core (see Fig. 3, left). The center core

was 20 � 20 � 16 voxels, centered within a 44 � 44 � 16 voxel

middle layer, which itself was centered in the volume. The

combined image was smoothed again with a 3D Gaussian filter

with FWHM 2 voxels. This secondary smoothing was applied in

order to eliminate discontinuities at the borders of different

smoothness, producing a smooth image. The outer 18 voxels of

the smoothed image were truncated, yielding a 64 � 64 � 32

nonstationary image with 6400 core voxels, 24576 middle-layer

voxels, and 106496 outer-layer voxels. The middle panel in Fig. 3

displays an example of a nonstationary image, and the right panel

shows the local FWHM image estimated from a set of 20

nonstationary images. Table 1 shows different smoothness settings

for the nonstationary simulation.

In both stationary and nonstationary simulations, each generat-

ed t image was thresholded and clusters were formed. For the

stationary simulation, three cluster defining thresholds uc were

used (corresponding to t critical values of 0.01, 0.001, and 0.0001),

while only one threshold (0.01) was used in the nonstationary

simulation. Three thousand realizations were generated for each

sample size in the stationary simulation, and 2000 realizations were

generated for the nonstationary simulation. Both RFT and permu-

tation test with 100 permutations were applied.
core was set to be smoother than the middle layer. Smoothness is in terms of

FWHM in voxels. The theoretical smoothness as a combination of the

primary and secondary smoothing is the square root of squared sum of these

smoothings (Holmes, 1994).

 http:\\www.fil.ion.ucl.ac.uk\spm\snpm\ 
 http:\\www.fil.ion.ucl.ac.uk\spm\snpm\ 


Table 2

Results from the nonstationary simulation

Smoothness [FWHM voxels] (outer, middle, core)

(4.9, 4.9,

4.9)

(4.5, 4.9,

5.4)

(3.6, 4.9,

6.3)

(2.5, 4.9,

7.8)

Estimated overall

FWHM

4.86 4.54 3.84 2.85

Rejection rates

Stationarity assumed

RFT (SPM) 0.031 0.038 0.137 0.538

Perm (SnPM) 0.050 0.045 0.046 0.052

Nonstationarity assumed

RFT 0.008 0.004 0.001 0.000

Perm 0.046 0.052 0.052 0.048

Rejection rates for the RFT and permutation tests, both when stationarity

and nonstationarity are assumed, along with the smoothness estimates in

terms of FWHM assuming stationarity. The 95% Monte-Carlo confidence

interval for rejection rate a = 0.05 is 0.040–0.060.
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Each test’s rejection rates were recorded and the corresponding

95% confidence intervals (CIs) were obtained by normal approx-

imation of a binomial proportion p̂F1:96
ffiffiffiffiffiffiffiffiffiffiffi
p̂ð1�p̂Þ

nr

q
, where p̂ is the

observed rejection rate and nr is the number of realizations. The

significance level of tests was set to 0.05; thus, the CIs should

cover 0.05. Since a large number of CIs were examined, some may

not capture 0.05 purely by chance. However, it is impossible to

calculate the expected number of CIs outside of 0.05 by chance

alone, since simulation results are correlated due to the same white

noise image being used in multiple smoothness settings. If the

simulated rejection rate is smaller than 0.05, then the test is

conservative but still considered as valid. On the other hand, if

the rejection rate is greater than 0.05, then the test is anticonserva-

tive, or liberal, and no longer considered as valid.

Data analysis

The PET data set used in this work is a subset of a study

comparing emotional responses between combat veterans with

post-traumatic stress disorder (PTSD) and controls. Male partic-

ipants were recruited by advertisement in veterans affairs hospitals

and by local newspapers. The patients had been diagnosed with

PTSD according to the DSM-IV criteria. Both patients and controls

were screened for chronic illness, dementia, substance abuse, and

structural abnormalities in the head. Written informed consent was

obtained from all participants, approved by the University of

Michigan and Ann Arbor VAMC IRBs. Sixteen PTSD patients

(PP) and 14 normal controls without combat experience (NC) were

included in the data set for this work. For each subject, two neutral
Fig. 4. Family-wise rejection rates of the nonstationary tests on stationary data. The

10 and 10, and 15 and 15, from left to right) when thresholded at t critical values 0.

intervals. Fine solid lines indicate the desired FWER (0.05) of the test.
scripts (ns) and two traumatic/stressful scripts (ss) were formulated

based on his past experiences described during an interview. These

scripts were presented in a counterbalanced design of two ns and

two ss, and the subjects were instructed to listen, reexperience, and

maintain the evoked state. PET scans were acquired by Siemens

ECAT-EXACT or ECAT-HR+ scanner. Obtained PET images were

realigned for head movement correction, anatomically standardized

to the Montréal Neurological Institute (MNI) coordinates, and

smoothed with a 12-mm FWHM filter using the SPM99 computer

package (Wellcome Department of Imaging Neuroscience, Univer-
RFT and permutation tests are compared for different sample sizes (5 and 5,

01, 0.001, and 0.0001 (from bottom to top), along with their 95% confidence



Fig. 5. The two largest clusters found at 0.01 threshold (t28 = 2.47).

Fig. 6. Clusters 1 and 2 from the analysis results (left), and the FWHM image

at the corresponding location (right). Cluster 1 includes both smooth and

rough regions, so its smoothness is similar to the overall image smoothness.

On the other hand, Cluster 2 lies in a rough region, and consequently, its

smoothness is smaller than the overall image smoothness.
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sity College London, UK). For each subject, a contrast image of

ss–ns, of size 79 � 95 � 68 with 2 � 2 � 2 mm voxels, was

obtained for a random effect analysis (Holmes and Friston, 1999).

To the resulting contrast images, a group comparison of NC-PP

was made by the nonstationary RFT and permutation tests, as well

as by the stationary RFT test, as implemented in SPM99, and by

the stationary permutation test, as implemented in the SnPM

toolbox. A Dell PC with dual 2.4 GHz Xeon processors and 2

GB of RAM with MATLAB version 6.5 (MathWorks Inc., Natick,

MA) running on a Linux platform was used in the analysis, which

took 9 h to perform the nonstationary permutation test with 1000

permutations with one of the two processors.
Results

Simulation-based validation

The results from the stationary simulation are shown in Fig. 4.

The RFT test is found to be anticonservative for the highest

threshold (0.0001) for any smoothness or df. For lower thresholds,

the test is found to be conservative for low smoothness, and as

smoothness increases, the test becomes less conservative. However,

this increase in the rejection rates surpasses the designed significant

level 0.05, and the test becomes anticonservative for high smooth-

ness. This trend is particularly apparent in low dfs, but for high df,

the rejection rates are close to 0.05 for high smoothness.
Table 3

The two largest clusters and their spatial extent under stationarity and nonstationa

RFT and permutation tests

Cluster Extent Stationarity assumed

(voxels)
Extent pFWE-corr

(RESELs)
RFT Perm

1 1274 1.552 0.224 0.116

2 940 1.145 0.418 0.205
The rejection rates from the permutation test are close to 0.05 in

any setting, indicating that the test performs well under any settings

examined.

The results from the nonstationary simulation are shown in

Table 2. As images become more nonstationary, the stationary

RFT becomes more anticonservative; this is due to the under-

estimation of the smoothness in the middle and core layers. On

the other hand, the nonstationary RFT becomes conservative as

images become more nonstationary. This may be because a large

portion of a simulated image is the rough outer layer where, as

seen in the stationary simulation, the nonstationary RFT test is

generally very conservative at a low threshold (0.01 in this

case). Both stationary and nonstationary permutation tests pro-

duced rejection rates close to 0.05 in all the settings in this

simulation. It is not surprising that the stationary permutation

test remains exact, since stationarity assumption is not required

in this test (see Discussion).

PET data analysis

At 0.01 threshold (or t28 = 2.47), nine clusters are found, of

which the two largest are shown in Fig. 5. These clusters are

located in bilateral amygdala (with some extension into middle and

inferior temporal gyrus), and represent differential activation

associated with processing of trauma/stress-related emotional con-

tent. The corrected P values for these clusters by the RFT and

permutation tests, both under stationarity and nonstationarity, are

shown in Table 3. These results are consistent with findings from

other functional activation studies of emotion and emotion-based

recall and imagery (Phan et al., 2002).

The average smoothness within Cluster 1 (average FWHM 9.5

voxels) is very similar to the overall smoothness of the entire image

(FWHM 9.4 voxels). For this cluster, the corrected P value for the

permutation test is larger in the nonstationary permutation test (P =
rity, as well as their P values, corrected for the whole brain volume, for the

Nonstationarity assumed Peak

Extent pFWE-corr T Puncorr
(RESELs)

RFT Perm

1.463 0.228 0.159 3.69 <0.001

1.768 0.159 0.107 4.20 <0.001
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0.159) compared to the one under stationarity (P = 0.116). This

reduction in sensitivity is likely due to increased uncertainty in the

permutation distribution caused by the variability in smoothness

estimation in the nonstationary method.

Cluster 2 is located in a relatively rough region of the image

(see Fig. 6), with its average smoothness FWHM 8.1 voxels, which

is smaller than the overall average FWHM for the entire image. For

this cluster, both nonstationary tests show increased sensitivity,

with the corrected P values decreasing dramatically (from 0.418 to

0.159 in RFT and from 0.205 to 0.107 in permutation).

To verify the accuracy of these results using 1000 permutations,

we reran the analysis with 10000 permutations. The P values

obtained from 10000 permutations are very similar to that obtained

from 1000 permutations. For Cluster 1, P values were 0.159 for

1000 permutations and 0.179 for 10000 permutations, and for

Cluster 2, P values were 0.107 and 0.122, respectively.
Discussion

Nonstationary permutation test

The nonstationary permutation test shows excellent control of

FWER for all smoothness, df, and cluster defining thresholds

considered. Note that it shows even more accurate control of

FWER than the stationary permutation test. At very low smooth-

ness, the stationary permutation test controls FWER conservatively

because of discreteness in the cluster-size distribution: Most of

clusters have the same size, 1, 2, or 3 voxels, and there is no critical

cluster size that can exactly control FWER (though P values are
Fig. 7. Critical cluster sizes from the stationary (left) and nonstationary (right) per

FWHM = 2.5 (outer), 4.9 (middle), and 7.8 (core) voxels. When critical cluster size

However, when the critical cluster sizes are expressed in RESEL units (bottom), the

sensitive in the core or the middle layer than the outer layer. Despite these dif

differently.
still accurate) (Hayasaka and Nichols, 2003). On the other hand,

when cluster sizes are measured in RESELs, the cluster-size

distribution is continuous: Clusters rarely have the same size in

RESELs, even though they may have the same number of voxels.

As a result, the nonstationary permutation test controls FWER

exactly.

With exchangeability under the null hypothesis and modest

smoothness, both stationary and nonstationary tests should be

exact, as seen in Table 2. However, under nonstationarity, the

stationary test is not uniformly sensitive, as the maximum cluster-

size distribution is most influenced by smooth areas. Fig. 7 shows

images of critical cluster sizes for both tests, in terms of voxels and

RESELs, from a realization in the nonstationary simulation. Since

the stationary test has a uniform critical cluster size in voxel units

(Fig. 7, top left), in units of RESELs, the critical cluster size is

smaller in the core and the middle layer compared to the outer layer

(Fig. 7, bottom left). Under nonstationarity, the null cluster-size

distribution in RESELs should be homogeneous, this means that

the stationary test has greater sensitivity in the smooth center of the

image, at the expense of reduced sensitivity at the rough edge. In

contrast, the nonstationary test has a uniform critical cluster size in

RESEL units (Fig. 7, bottom right); thus, the test had uniform

sensitivity under nonstationarity.

Nonstationary RFT test

For the nonstationary RFT test, even though the test is designed

to overcome nonstationarity, it is still prone to violations in other

assumptions in RFT, such as failure in lattice approximation of a

smooth random field, biases in its approximated cluster-size
mutation tests for a realization from the nonstationary noise simulation with

s are expressed in voxel units (top), the stationary test is uniformly sensitive.

nonstationary test is uniformly sensitive, whereas the stationary test is more

ferences, both permutation tests are exact, they just apportion sensitivity
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distribution, and clusters being truncated by the edge, as discussed

in Hayasaka and Nichols (2003). However, the RFT test appears to

perform well in low thresholds with sufficient smoothness, as df

increases. We were unable to carry out simulations with df > 28

because of limitation in our computational resources, but for higher

df and sufficient smoothness, the RFT test may be more suitable

than the permutation test, considering that the computational

burden is more severe in the permutation test for high df.

Sensitivity and smoothness estimation

The results from the data analysis indicate that the nonstation-

ary permutation test has reduced sensitivity when the smoothness

of a cluster is about equal to the overall smoothness. This reduced

sensitivity is due to increased variability in smoothness estimation.

Under an assumption of stationarity, smoothness is estimated

pooling over all the voxels. On the other hand, in a nonstationary

method, smoothness has to be estimated at each voxel separately

without pooling, resulting smoothness estimates having much

smaller effective df and a larger variation. When cluster sizes are

measured in terms of RESELs, such uncertainty in RPV estimation

is propagated into cluster sizes.

The impact of local smoothness estimation can be gauged by

comparing stationary and nonstationary methods on stationary data.

Fig. 8 shows results from the t18 stationary noise simulation with

0.01 cluster defining threshold. The left panel in Fig. 8 shows the

95th percentile of the maximum cluster size, computed assuming

stationarity (dashed line) or not (dotted line). Since stationarity

holds, the true cluster sizes are equivalent, but estimation variability

in RPVincreases the 95th percentile asmuch as one RESEL. In order

to correct for such variability, both RFT and permutation tests have

larger critical cluster sizes under nonstationarity, compared to that

under stationarity (the middle and right panels, Fig. 8).

To overcome this problem, the variability in smoothness estima-

tion needs to be reduced. One way to achieve this is by smoothing

the RPV image to implicitly increase df, in a similar manner as the

variance smoothing in the permutation test (Holmes et al., 1996).

However, smoothing RPV image blurs rough regions, which results

in adjusted RESEL cluster sizes in rough regions becoming smaller,

reducing the sensitivity of the test in such regions. Also, the fine

structure found in the local smoothness image from a VBM data set

(Fig. 1, right) would be lost with smoothing.

Despite the overall reduced sensitivity mentioned above, in the

data analysis, the cluster-size tests under nonstationarity demon-

strated their increased sensitivity in a rough region. Another
Fig. 8. Corrected critical cluster sizes from t18 simulation with 0.01 threshold. The

well as the ones from the RFT test (middle) and the ones from the permutation t
perspective in this conclusion is that when stationarity is falsely

assumed in a nonstationary data set, a stationary cluster-size test

may not have enough sensitivity to detect clusters in rough regions.

Furthermore, underestimation in smoothness caused by rough

regions could lead to anticonservativeness, especially in the RFT

test, as seen in the nonstationary simulation. In order to avoid the

biases in stationary cluster-size tests mentioned above, the image

roughness should be examined.

Practical recommendations

For a practitioner wishing to apply cluster-size inference to his or

her data set, the first step should be to examine whether or not images

are stationary. This step is necessary because nonstationary meth-

ods’ sensitivity can be lower than stationary methods’ when applied

to stationary images, due to extra uncertainty in smoothness esti-

mation. One way to examine stationarity is to examine the RPV

image generated by the SPM99 package after an analysis. The RPV

image may not be readily interpretable, but it can be easily converted

to FWHM by

FWHMðvÞg 1

ðRPVðvÞÞ1=3

The FMRISTAT package (http://www.math.mcgill.ca/keith/

fmristat) computes both RPV(v) and the bias corrected FWHM(v).

Once local FWHM is known, then stationarity can bemore easily

examined. If a gray matter probability map is readily available, as in

a VBMdata set, FHWM(v) or RPV(v) can be plotted against the gray

matter probability to see if there is any pattern. Even if the

smoothness does not systematically vary with gray matter density,

nonstationarity may be present. If stationarity assumption is in

doubt, then a nonstationary cluster-size test should be used.

If a nonstationarity test is to be used, a choice needs to be made

on which test to be used, either the permutation or the RFT test. For

low df (<30), the permutation test is more desirable. As seen in our

simulations, it performs well for any threshold and smoothness, and

though time consuming, it is computationally feasible for a small

number of scans. Since the permutation test is exact regardless of

threshold, widely used 0.01 threshold can be used. For high df (>30)

and sufficient smoothness, with majority of voxels with FWHM> 3,

the RFT test is preferred, since the permutation test becomes more

computationally intensive as df increases. For the choice of thresh-

old, though conservative for the RFT test, a 0.01 threshold is
true critical cluster sizes, or the 95th percentiles from the simulation (left), as

est (right).
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statistically valid, since it keeps false rejections under the desired

level, as seen from the t28 simulation. For a sufficiently large df (30),

widely used 0.001 threshold may also produce a statistically valid

test, and may be less conservative than 0.01 threshold. However, we

were unable to verify this since we were unable to simulate images

with higher df. Even with high df, for images with large areas of low

smoothness (FWHM < 3), the permutation test is preferred if

computational resources permit, since the RFT test is considerably

conservative for low smoothness.

Conclusion

We developed a cluster-size permutation test under nonstatio-

narity using the framework developed by Worsley et al. (1999) to

adjust cluster sizes according to local roughness. Through simu-

lations and the data analysis, it was found that applying stationary

cluster-size tests to nonstationary images could lead to reduced

sensitivity in rough regions and increased false positives in smooth

regions. Our nonstationary permutation test was found to be exact

under any simulation settings examined, producing the desired

significance level. The nonstationary RFT test was found to be

conservative in our nonstationary noise simulation. However, the

nonstationary RFT test remains valid while the stationary RFT test

could become anticonservative under nonstationarity. For low df,

where the RFT test is unstable, our permutation test is very stable,

producing rejection rates close to the desired significance level.

Thus, our test is desirable for low df settings. For high df and high

smoothness, the RFT test seems to perform reasonably well, thus it

is more suitable than the computationally intensive permutation

test. Nonstationary cluster-size tests have increased sensitivity in

rough regions compared to stationary cluster-size tests, despite the

loss of overall sensitivity due to smoothness estimation variability.

These nonstationary cluster-size tests can be more widely applied

to data known to be nonstationary, such as VBM data.
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Appendix A. Bias corrections in smoothness estimation

Since FWHM(v) and RPV(v) are functions of jK(v)j, in order to

estimate FWHM(v) or RPV(v), jK(v)j needs to be estimated

accurately. From Kiebel et al. (1999), it can be shown that

Au̇ðvÞVu̇ðvÞAfAKðvÞA
j
D

a¼1
Va

VD
0

: ð12Þ

Thus, ju̇(v)Vu̇(v)j can be used as an estimate of jK(v)j or its

power, with appropriate bias corrections below.
For large degrees of freedom g, it is clear that ju̇(v)Vu̇(v)j!jK(v)j
since the powers of V’s sum to zero. For small degrees of freedom,

we can obtain an unbiased estimate by dividing by a correction

factor c:

jK̂ðvÞja ¼ Au̇ðvÞVu̇ðvÞAa=c;

where

c ¼ E
Au̇ðvÞVu̇ðvÞAa

AKðvÞAa

� �
¼ E

j
D

a¼1
Va

VD
0

0
BB@

1
CCA

a2
664

3
775

¼
C

g
2
� aD

� �
C

m
2

� � YD
a¼1

C
g � a

2
þ a

� �
C

m � a

2

� � ;

provided that the arguments of all gamma functions are positive. In

practice, this means g > D. Interestingly, c = 1 for RPV (a = 1/2);

thus, in our simulations and analysis, the df correction was not

employed.

If g V D, then the bias in the above estimator cannot be

corrected. In this case, we assume that K(v) is diagonal, and base

our estimator on the product of the diagonal elements jD
k¼1diagk

ðu̇ðvÞVu̇ðvÞÞ which has the same distribution as (12) but the df of Va
is D�1 instead of D� a, a = 1, 2,. . ., D. The correction factor c is

the same as above but with a = 1 inside the product.
Appendix B. RFT P value approximation

The P value for a cluster C in the nonisotropic case depends on

the cluster RESELs R rather than the cluster volume measured in

voxels. Since the cluster volume is small, the random error in the

estimated cluster RESELs R̂ can make a substantial contribution.

From Eqs. (6) and (7), the distribution of R̂ now depends on the

local properties of the random field M, defined by

R̂ ¼
X
vaC

dRPV ðvÞ ¼ X
vaC

RPV ðvÞMðvÞ

where

MðvÞ ¼ j K̂ðvÞ j1=2
j KðvÞj1=2 :

From (12), the distribution of M(v) at each point is

MðvÞf
j
D

a¼1
Va

VD
0

0
BB@

1
CCA

1=2

where Va’s are independent v
2 random variables with g � a degrees

of freedom. However, the distribution of weighted sums ofM(v), as

above, depends on the spatial covariance function ofM(v), which in

turn depends on the spatial covariance function of e through more

than just K, specifically, the variances of fourth derivatives of e.
However, we can make a simple approximation as follows.

First, note that E(M(v)) and Sd(M(v)) are the same at every voxel.



Fig. 9. The observed distribution of cluster RESELs R at 0.01 threshold for two-sample t18 images (solid lines) and its theoretical approximation R̂ based on

RFT (dashed lines). The top row shows the overall shape of the distributions from the 40th to 100th percentiles, while the bottom row shows the shape of the

distributions around the 95th percentiles, the uncorrected critical cluster sizes.
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Then, since Cov(M(u),M(v)) V Sd(M(u))Sd(M(v)), it is straightfor-

ward to show that

SdðR̂Þ V R SdðMðvÞÞ

with equality if M(v) is flat over the cluster C. This suggests that

we can bound R̂ stochastically by R times the distribution of M at a

single voxel. This bound would be close if M were very smooth, or

if C were very small. This leads us to our approximation

R̂cR
j
D

a¼1
Va

VD
0

0
BB@

1
CCA

1=2

:

Combining this with the approximate distribution for R from

Cao (1999) requires no extra computational effort. The distribution

R̂ simply multiplies the distribution of R by a few more indepen-

dent v2 random variables raised to various powers. In practice, the

distribution function of R̂ is best calculated by first taking loga-

rithms, so that log R̂ is then a sum of independent random

variables. The density of a sum is the convolution of the densities,

whose Fourier transform is the sum of the Fourier transforms. It is

easier to find the upper tail probability of log R̂ by replacing the

density of one of the random variables by its upper tail probability

before doing the convolution. The obvious choice is the Beta

random variable, since its upper tail probability has a simple closed

form expression. This method has been implemented in the

stat_threshold.m function of FMRISTAT, available from http://

www.math.mcgill.ca/keith/fmristat.

Fig. 9 shows the observed and theoretical distribution of cluster

RESELs R. The RFT does not approximate the distribution well for

low smoothness, but for sufficient smoothness, the RFT approxi-

mation is close to the observed distribution.
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