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Despite almost a decade since the introduction of Dynamic Causal Modelling (DCM), there remains some
confusion within the wider neuroimaging, neuroscience and clinical communities as to what DCM studies
are probing, and what all the jargon means. We provide ten simple rules, and a theoretical example to gently

introduce the reader to the rationale behind DCM analyses, and how one should consider neuroimaging data
and experiments that use DCM. It is deliberately written as a primer or orientation for non-technical imaging
neuroscientists or clinicians who have had to contend with the technical intricacies of understanding DCM.
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Introduction

“As science becomes more complex, the argument goes, an ever-
increasing amount of specialist jargon is required to describe it pre-
cisely. Even fif this is true, however, technical terminology can be
explained, and it need not present an insurmountable problem to
the scientifically literate reader.” (Anon., 2000)

As neuroimaging research has matured, researchers have adopted
complex methods to help them infer the most from their datasets. A re-
cent advance has seen authors attempt to construct realistic models of
their data in order to best explain how they were generated. This
piece aims to provide a short introduction to one such method; namely,
dynamic causal modelling (DCM) (Friston et al., 2003), with a view
to demystifying the technical language that may prevent a clinician
(or anyone who forgot to do a graduate degree in engineering) from cri-
tiquing these studies. The only mathematical prerequisite to this report
is that the reader understands the difference between a series of data
points in time, and the rate of change of the data with respect to time
(ie. the gradient of the plot of data vs. time). This is important as
DCM models the changes from one time point to the next to make
sense of how brain regions impact on each other's neural activity (see
Rule V). This piece aims to (i) frame how one should consider neuroim-
aging data (with a strong emphasis on fMRI), (ii) how this relates to the
rationale of DCM, and (iii) gently introduce the reader to the, at first,
obscure language that attends DCM. As an introductory text, we have
chosen to focus on fMRI data as DCM for fMRI models neuronal interac-
tions in the most generic form possible. However, we briefly discuss
later how these concepts translate to electrophysiological datasets.
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I. Neural activity causes behaviour

Functional neuroimaging studies rest on the assumption that mea-
surable behaviours are caused by neural activity, and that experimental
stimuli change neural activity. This activity occurs throughout the brain,
especially so in spatially distributed regions that are specialised to pro-
cess the stimuli or behaviour in question. These different regions are
often considered to be distinct processing modules. This concept is re-
ferred to as “functional segregation”. However, the neuronal processing
is more than the sum of activity in these modules — the regions need to
communicate; i.e., pass information to each other in an optimal way in
order to process stimuli and execute optimal behaviour. This concept is
known as “functional integration”.

Publication statistics suggest that there is an increasing focus on
connectivity analyses (Friston, 2011), as the field has turned from
addressing questions of functional segregation to investigating func-
tional integration. Quantifying connectivity based on the fMRI blood
oxygen level dependent (BOLD) signal can be achieved through various
methods. A dichotomy exists in the literature between “functional con-
nectivity” and “effective connectivity”. Functional and effective connec-
tivity both describe measures that are purely based on the BOLD signal
of distant regions. This is not the same as “structural connectivity” mea-
sured through “tractography” or diffusion tensor imaging (DTI) white
matter assessments (for primer, see Mori and Zhang, 2006) — although
structural and functional/effective connectivity are not independent as
such (Stephan et al., 2009b). In order to best understand the difference,
and how DCM works, one must first consider what the BOLD signal is
and how data are generated in fMRI experiments.

II. Neuroimaging data is generated by downstream effects of
neural activity

The BOLD signal has long been the subject of much discussion, the
details of which are covered in depth elsewhere (Heeger and Ress,
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2002). In short, it results from differences in magnetic field homoge-
neity induced by the differential magnetic properties of oxy- and
deoxyhaemoglobin. The deoxygenation of haemoglobin is considered
an indirect measure of synaptic activity, under the assumption that
neurons require more oxygen, and thus more blood, when they are
metabolically more active. However, the events leading to BOLD signal
alterations are still not precisely defined. Therefore, physiologically val-
idated models are used to guide understanding of the process (more in
Rule V). It is also important to remember that these discrete cortical
processing units are not simply composed of excitable principal cells;
cortical columns are arranged in populations of both glutamatergic
and GABAergic populations, simultaneously displaying excitation
and inhibition on receipt of a distant input (sometimes referred to as
“canonical microcircuits” (Bastos et al,, 2012; Douglas et al.,, 1989) —
the implications of this on electrophysiological DCMs are discussed in
Box 1). The acknowledgement that the BOLD signal is not a direct mea-
sure of neural activity, although seemingly obvious, is fundamental
(Logothetis, 2008), and can be confused in reporting results (the same
would be true of any other indirect measure of neural activity — PET,
SPECT etc.).

One could consider the BOLD signal a dependent, measurable
(or observed) variable (y) of the underlying neural activity (z) that
cannot be measured with fMRI (thus, the neural activity is an example
of a “hidden state variable”). This concept has been used in all general
linear model-based analysis of fMRI data, and is identical in DCM with
one key difference (see footnote').

III. Experimental manipulations can directly perturb neural activity

In a fictitious visual perception experiment, imagine a subject is
placed in an MRI scanner and presented with a visual stimulus period-
ically [Fig. 1A]. The timings of stimulus-presentations are used to create
an explanatory variable of the whole-brain BOLD data, and we find
three clusters (that is, groups of voxels) are significantly explained by
this explanatory variable (i.e. regions that show an altered response).
Now imagine one knew the functional architecture of the highlighted
brain regions; that is, how information propagates through these
connected and functionally specialised regions to produce the observed
results.

One such architecture could be as depicted in [Fig. 1B]. In this example,
presentation of the visual stimulus u; may cause a change in the neural
activity (z) of region 1 (z;), which in turn causes a change in the measur-
able BOLD signal (y) of region 1 (y;). Z; then causes an effect on z,, medi-
ated by the (“extrinsic” or between region) connection from 1 to 2 (az;).
Likewise, z, in turn causes an effect on zs. In addition, these regions
contain some self-inhibitory properties, mediated by self-connections
(“intrinsic” or within region connections; e.g. a; ;), preventing runaway
outbursts of neural activity. Note that this chain of events only occurs
with presentation of our visual stimulus, thus the model only explains
the network dynamics in that instance. It does not tell us the dynamics
when the stimulus is not present (e.g. at rest) or when the visual stim-
ulus changes (to say, an emotional face). Obviously, this functional ar-
chitecture is only one possible model of how our visual perception
data are generated, there are a number of other equally plausible

! Standard general linear model (GLM) analyses rely on convolving a stimulus function
(representing onsets and durations of stimuli — an assumed neural model) with a
haemodynamic response function (HRF) to produce an explanatory variable (an exoge-
nous input) that is used to identify brain regions related to the stimuli. This essentially
treats voxels as isolated regions, testing to see which voxels are sensitive to the input.
DCM also uses convolution models, with two key differences: Firstly, neural states (z)
causing BOLD data (y) in DCM are sensitive to both exogenous inputs (as in GLM analyses)
and afferents from other regions. Secondly, the convolution model implicit in DCM is
nonlinear due to some mild nonlinearities in the haemodynamic response, dealt with in
GLM analyses by including basis functions of the HRF (see Friston et al., 2003; Friston,
2002). In short, DCM is simply a generalisation of the convolution models used in all
GLM analyses, the only important difference is that DCM allows the experimenter to ad-
ditionally consider the effects of other regions on their neural model.

Box 1
Extending these concepts to EEG/MEG and LFP datasets.

Unlike fMRI data, EEG/MEG and LFP datasets have a rich tempo-
ral structure allowing much more complicated models of cortical
function to be employed (David et al., 2005). Pioneered with
evoked responses in EEG and MEG (David et al., 2006; Jansen
and Rit, 1995), and later extended for steady-state responses
and neural fields in EEG/MEG and LFP data (Moran et al.,
2007, 2009), electrophysiological DCMs use physiologically
plausible neural mass and neural field models as generative
models of the observed data. These models embed each region
with several neuronal subpopulations representing key constitu-
ents of the cortex. A variety of models differing with respect
their structure (e.g. canonical microcircuit — Bastos et al.,
2012), or how the model was formulated (see difference be-
tween convolution vs. conductance-based models — Moran et
al., 2013) are available, dependent on the type of data collected
and experimental setup. Most embed each region with excitato-
ry pyramidal output neurons, inhibitory interneurons, and excit-
atory spiny input neurons (Fig. 4). Intrinsic connections are
estimated for each region (in the case of Fig. 4, reciprocal con-
nections between the pyramidal and inhibitory interneurons, re-
ciprocal connections between the pyramidal and spiny input
neurons, and a self-inhibitory connection in the inhibitory popu-
lation). Extrinsic connections are also subdivided into forward,
backward or lateral connections, each arriving as afferents to
different subpopulations in accordance with primate connectiv-
ity patterns (Felleman and Van Essen, 1991). The firing rate of
each subpopulation is treated as a hidden state, dependent on
the average pre-synaptic inputs, post-synaptic membrane po-
tential, constants summarising the biophysical membrane prop-
erties. The forward models used to map the neural activity to the
observed data are discussed in depth elsewhere (see review —
Moran et al., 2013). Putting aside the elegant mathematics,
these DCMs can be used in exactly the same way as we have
discussed. The coupling parameters (intrinsic or extrinsic) are esti-
mated in the same manner, and models can be similarly compared
with BMS. Importantly, given the additional complexity of the gen-
erative models employed, these DCMs can furnish estimates of
much more subtle parameters than those estimated in DCM for
fMRI. For example, these DCMs have been applied as a ‘mathe-
matical microscope’ to probe neurotransmitter receptor function
(Moran et al., 2011a), but can also be used in a similar way to
DCM for fMRI to explore extrinsic coupling parameters (Marreiros
et al., 2012; Moran et al., 2011b). For a practical guide to
implementing DCM for these datasets, see (Litvak et al., 2011).

models that could underlie this network (this will be discussed in
Rule IX). In a clinical population, the investigator here might be in-
terested in understanding how the model architecture changes
with the onset of acute disease (e.g. modelling responses following
a stroke (Rehme et al., 2011)), explore how neurodegenerative process-
es or neurorehabilitation impacts on BOLD responses (Abutalebi et al.,
2009).

IV. Functional connectivity describes statistical dependencies
between regions

Having considered a mechanism by which the results in the visual
perception example may have come about, let us return to the dichotomy
between functional and effective connectivity. Functional connectivity
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Fig. 1. Our fictitious visual perception fMRI experiment. This experiment consists of two experimental manipulations or ‘inputs’ (u); u(;) = visual stimulus input, u;y = drug input.

Coupling parameters denoted by a(yj, represents the effective connectivity from node j to k, in the context of stimulus u(;). Parameters labelled c(y ) denote the effect of the input on
target node k. Parameters labelled b,y denote the modulatory effect of the input on target connection. When the subject views the stimuli in the control state (A), three brain
regions are shown to be related to the onset of the stimuli. The BOLD signal from each of these regions is represented by y(1), y(2) and y(3). (B) The BOLD signal from a single region
is produced by a change in its underlying neural activity z, which has not been measured during the experiment. The underlying neural activity of region 1 has an effect on the
underlying neural activity of region 2 (an extrinsic connection); the strength of this effect is determined by the value a(,;). The underlying activity of region 1 also has some
self-inhibitory dynamics (intrinsic connection), determined by the value a(; ;. The equations of motion (C) show the rate of change of each of the regions' underlying neural activity,
z. During the drug condition, an interaction is found in region 2 (D). This is modelled as a modulatory drug input having an effect on the strength of the extrinsic connection a3,
(E). The strength of this effect is determined by the value b(»,2). (F) The equations of motion have thus changed to accommodate this additional modulatory input.

describes statistical dependencies between regions, i.e. correlations.
In other words, which voxels in the brain display similar BOLD signal
fluctuations over the course of a scan. BOLD data extracted from a seed
region have been shown to be significantly correlated with BOLD data
at distant regions that show similar functional specialisation, regardless
of behavioural state (e.g. motor (Biswal et al,, 1995) and visual networks
(Lowe et al., 1998)). So called ‘data-driven’ decomposition analyses
(independent component analyses etc.) have similarly been able to doc-
ument consistent spatiotemporal relationships between brain regions of
similar function in healthy subjects (Damoiseaux et al., 2006). Further-
more, changes in these measures have been reported with onset of dis-
ease and may give rise to biomarkers of neurological and psychiatric
disease (Greicius et al, 2007; Zhang and Raichle, 2010). While these
consistent findings are interesting, these analyses document a feature
of fMRI data; namely, that similarly specialised regions display a similar
y at a given time. However, functional connectivity analyses do not
consider causal interactions within the network, i.e. how information
propagates through brain regions (Friston, 1994, 2009, 2011; Smith,
2012). Returning to the visual perception example, imagine the BOLD
signal at regions 1, 2 and 3, (y;, y» and ys,) are all strongly correlated;
this could mean that they are connected in a number of different ways,
or not connected at all, rather are all driven by a common input [Fig. 2].
In that respect, while of cartographic interest - in our example, iden-
tifying regions that may be engaged in visual processing — we are still

no closer to understanding how information is being exchanged
between these regions. For example, in Parkinson's disease (PD),
functional connectivity analyses have been able to document wide-
spread changes in BOLD spatiotemporal relationships within motor
and non-motor regions (Hacker et al., 2012; Jech et al.,, 2013; Wu et
al.,, 2009). These results are interesting and may serve as reliable bio-
markers, however conclusions from these studies provide limited in-
sight into how such changes come about, or how they might be
resolved.

V. Effective connectivity is defined by a model and corresponds to
the directed influence that one region exerts on the rate of change
of activity in another

In contrast, effective connectivity is defined as the directed influence
one region has over another (Friston, 2009), and thus can supplement
functional connectivity analyses in a complementary manner.

Measures of effective connectivity in DCM consider the rate of
change of neural activity with respect to time (Z) in response to
some incoming signal (be it from another brain region or an exoge-
nous environmental stimulus). Most (possibly all) connections that
exist in the brain are reciprocal, thus in order to mathematically dis-
sect the effect of one region on another, we must consider that the
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Inferences on model structure based on BOLD signal correlations

Regions share common input
but do not actually interact

Fig. 2. Potential models of functional connectivity between regions: These three regions express highly correlated BOLD signal fluctuations, but little is known about the underlying
functional architecture. Note that inferences are made at the level of the BOLD data, y, not the underlying neural activity, z.

impact of one region on another is delayed in time (utilising the prin-
ciples of “dynamical systems theory”) (Daunizeau et al., 2011a,b).

In order to quantify effective connectivity, one must create a plau-
sible model of how the observed BOLD signal y may be generated by
these influences (this is known as a “generative model”), just as was
done in [Fig. 1B]. This departure from analysing y, to considering how y
is generated is an important distinction to understand. When we model
data it is important to consider that we are rarely able to fully explain
how observed data are generated by complex systems — the aim of
modelling is really to provide a parsimonious and plausible mechanism
with which to better understand such systems.

DCM has become the method of choice for modelling causal interac-
tions in neuroimaging data (note, while we have concentrated here
on fMRI data, adapted DCM methods for local field potentials (LFP),
electroencephalography (EEG) and magnetoencephalography (MEG)
datasets are similarly increasingly used — see Box 1). The most common
implementation of DCM (standard/deterministic DCM) assumes that
the system modelled is fully deterministic, meaning that the evolution
of hidden neural activity over time in a given region (Z) is purely
due to its afferent (incoming) connections and experimental inputs
(as described in Fig. 1C). Note the distinction between an afferent and
an input. An afferent arrives from a node (distant or self), whereas an
input is introduced by the experimenter (for example visual input
from the retina, via the lateral geniculate nuclei - neither of these neural
populations are themselves included in the model, rather it is assumed
that they convey the convolved stimulus function coding visual input to
aregion - see footnote to Rule II). Theoretically therefore, if all the affer-
ents and inputs to a region (including intrinsic connections) were re-
moved, the rate of change of neural activity z (z), would be zero, thus
activity would remain constant. Such assumptions may not always be
ideal as they forgo autonomous dynamics that may characterise certain
brain regions (e.g. substantia nigra neurons), or periods where there
are no experimental inputs (such as resting state fMRI — see Rule X),
or regions not showing experimentally evoked effects.

The effect an afferent has on the dynamics of the node depends on
the connection strength (or “coupling parameter” — e.g. the size of
value a, ;) and the activity at the source of the afferent. This is similarly
true of inputs; the influence of an experimental input is determined by
the value of ¢; ;.

VL. Experimental manipulations can also change the effective
connectivity strength of a connection to produce bilinear effects

Now imagine the visual experiment is repeated in the same subject,
this time after they have received a drug infusion (for pure theoretical

perfection, imagine that this drug had no effect on neurovascular cou-
pling, and had very slow pharmacokinetics) [Fig. 1D]. New fictitious
findings now show the same regions to be active again, and the BOLD
signal y; and y3 remains unchanged. However, an interaction between
visual stimulation and drug was noted in the observed responses of
region 2; under drug, y, consistently increases.

Now, returning to our generative model, we can say that because
the observed y; and y; are unaffected by the drug, it is likely that z;
and z3 have also remained largely unaffected. The changes noted in
y> can only be explained by changes in z,, and - under deterministic
assumptions - this must be explained by a change in one (or more)
of the coupling parameters of its afferents. In order to explain interac-
tions, separate experimental inputs can enter the model as modulatory
effects on a connection, as shown in [Fig. 1E]. In our example, the effect
of drug (u) is modulating the connection a 3, according to the strength
of the modulatory effect, b,,,», culminating in changes in Z,. Notice that
these are changes to a rate of change (25), thus are called “second order”
or “bilinear effects”. This is because the modulatory input and the affer-
ent input interact to affect the rate of change of neuronal activity. The
astute reader will notice that changes in Z, could have been caused by
modulatory effects on any of the other afferents into node 2 (a,; or
ay, or both). This highlights the problem of competing hypotheses
(explanations) in data modelling and will be discussed later.

VII. DCMs estimate the coupling parameters given the structure of
the model, the experimental inputs, and the observed data

The purpose of a DCM analysis is to estimate the coupling parame-
ters of a model (the a, b and c values), and evaluate how well a particular
model explains the observed data. This allows the experimenter to make
inferences about the structure of the network (e.g. whether the data is
best explained by bottom-up or top-down transfer — see model compar-
ison, Rule IX), as well as/or quantify the coupling strength and direction
of coupling between regions. Importantly, neither of these questions
can be answered by looking at correlation strengths as in functional
connectivity.

Returning to the earlier example of PD, DCM studies have been
able to account for differences between patients and controls, on vs. off
medication states (Rowe et al, 2010), and on vs. off deep brain
stimulation states (Kahan et al., 2012), specifically by considering the
presence/absence of connections, and/or the strength of certain connec-
tions within a generative model. The same is true of electrophysiological
datasets; Marreiros et al. (2012) have been able to demonstrate that the
effect of levodopa on beta synchrony observed in motor regions in PD
can be explained in terms of changes in causal influences between the
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motor cortex, pallidum, and the subthalamic nucleus. Such studies have
emphasised the role of neuronal synchrony over rate-based models of
disease, and explain the observed changes in oscillatory dynamics in
terms of changes in extrinsic effective connectivity (see also Moran et
al,, 2011b). The conclusions of these studies are arguably more informa-
tive about the disease/therapeutic process, highlighting key differences
at specific causal influences, potentially providing targets for future ther-
apeutic interventions.

So, how does DCM estimate the parameters of the generative
model? Inevitably, this is where it gets a bit complicated. In our ex-
ample, we have three equations that define Z for each of our nodes
(under deterministic assumptions); these are known as the “equations
of motion” because they described the motion or rate of change of the
hidden neuronal states (displayed in [Figs. 1C & F]).

DCM uses an expectation maximisation (EM) algorithm to produce
probabilistic estimates of the expected value of each parameter, in addi-
tion to its variance (under the assumption that the parameter values
conform to Gaussian assumptions, i.e. the parameter values are normally
distributed). These values (“posterior estimates”) are conditional on the
model structure, thus models with a different architecture (different
connections), will have different posterior estimates. In other words,
posterior estimates are the most likely parameters, given a particular
model and data. The intricacies of this estimation process are beyond
the scope of this report; for those with a (strong) mathematical back-
ground, see (Supplementary Table 1 & Do and Batzoglou, 2008; Friston,
2002; Friston et al., 2003). The aim of the estimation process is to refine
the model parameters, so that it produces a predicted signal that is as
close as possible to the observed BOLD data.

In order to do this, one would need to understand the relationship
between the z values for each node and the observed BOLD signal y.
The relationship between neuronal state and observed signal can be
modelled as a series of nonlinear biological processes depending on
the neuroimaging modality utilised (see Box 1 for application to
EEG/MEG/LFP data). For fMRI data, this originates with neuronal ac-
tivity, causing an increase in the vasodilatory signal. This results in
a proportional increase in flow into the region with concomitant
changes in blood volume and deoxyhaemoglobin content, causing
the observed change in BOLD response (Buxton et al., 1998; Friston
et al, 2000). This is called the “haemodynamic forward model”,
mapping the hidden state to the observed data. This mapping is
dependent on a number of parameters (“the haemodynamic parame-
ters” in the case of fMRI) that, like the coupling parameters, need to
be estimated. Once we have potential values for the coupling param-
eters, and the parameters that determine the forward model, a pre-
dicted y can be calculated.

In short, EM tunes the coupling and haemodynamic parameters
so as to maximise the concordance between predicted and observed
BOLD signal in a way that avoids using unlikely parameters (large
parameters that render the model unstable or those that deviate sub-
stantially from prior assumptions on both coupling and haemodynamic
parameters — the latter based on those obtained in (Friston, 2002)).

VIII. Model inversion allows one to compute the evidence for
each model

The estimation procedure (sometimes called “model inversion”)
additionally scores the model in terms of how well it explains the
data (i.e. how similar the predicted and observed responses are). It
is important to note that this scoring is corrected for how many free
parameters were estimated; mathematically, a model that has modula-
tory effects at two connections has the potential to explain the data bet-
ter (i.e. it could be more accurate) than a model with modulatory effects
on one connection. This would introduce a bias towards complex,
“over-parameterised” models guilty of “over-fitting” (i.e. fitting too
much of the observed data with the generative model — this is problem-
atic because we know that whatever signal processing is implemented,

the BOLD signal is still noisy and in part due to extra-physiological
variance) (Penny et al., 2004). Models that capture noise and over-fit
data are less generalizable (ie. they are unlikely to model a future
dataset), thus have limited mechanistic value. This scoring is in terms
of something called “model evidence” (or more accurately, the ‘Free
energy’, which is an approximation of the model evidence), and is a
compromise between model accuracy and model complexity, avoiding
bias towards over-parameterised models.

IX. Equipped with the evidence, one can then compare models
representing different a priori hypotheses of the functional
architecture using Bayesian model selection

The model evidence can subsequently be used to compare a series
of models to assess which of a number of plausible models is the most
likely to have generated the observed data. This necessitates the in-
vestigator to have a series of equally likely competing hypotheses of
the underlying functional architecture (or “model space”) to test a
priori. This model space may take the form of two models that do
and do not possess an a connection between two regions, or models
in which that connection is, or is not, modulated by an experimental
manipulation.

Differences in relative “log-evidences” (the logarithm of model
evidence) can then be summarised as a conditional probability
(or “posterior probability”) for each competing model, representing
the probability of that model, given the observed data. This process
of comparing the evidence for different models is known as Bayesian
model selection (BMS) and has been extended to compare models
in group studies, and compare different families of similar models
(Penny et al., 2004, 2010; Stephan et al., 2009a,b). Model comparison
is common practise in DCM studies and can shed light on pathological
mechanisms. For example, BMS has been used to demonstrate that
patients with primary progressive aphasia performing semantic and
phonological processing tasks utilise the same functional architecture
as control subjects, but with significantly reduced connectivity be-
tween Wernicke's and Broca's areas (Sonty et al., 2007).

Research into experimental design of DCM studies has revealed that
subtle changes to an experiment, such as inter-stimulus interval and
block length, can have significant effects on the statistical power of sub-
sequent Bayesian model comparison. However, unlike GLM analyses,
only a few studies have addressed issues of optimising DCM experimen-
tal design (Daunizeau et al., 2011a,b; Goulden et al., 2012).

X. ‘Classical’ DCM studies attempt to answer three types of question

When reading a study employing DCM, always try to understand
the scientific question the author is trying to answer. Often this will
fall into one (or more) of three categories: (1) What is the underlying
functional architecture of a network of brain regions? (2) Which con-
nections are modulated by experimental manipulation? (3) Are the
coupling parameters of a network of brain regions different in two
groups of people (e.g. patients vs. healthy controls)? Examples of
questions that could be answered with an appropriately designed
model space for our visual perception experiment are illustrated in
[Fig. 3].

Question 1 can be answered by specifying a number of competing
(but all equally plausible) models differing with respect to the presence/
absence of a connection, and then comparing them using BMS to deter-
mine which is the most likely to have generated the data. For example,
as alluded to in Rule VII, one may want to know whether the data is best
explained purely by bottom-up transfer, or in combination with top-
down mechanisms. A model space as shown in [Fig. 3A] (assuming a
hierarchical organisation) could test this hypothesis; here, the models
differ with regards the presence of feedback connections.

Similarly, question 2 would use BMS, however this time the com-
peting models would differ with respect to the connections which an
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Is information propagated in a purely feed-forward manner

or in a feed-forward and feed-back manner?

Does the sensory stimulus drive one region
or multiple regions?
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Fig. 3. Examples of possible model spaces testing different hypotheses: (A) Here, the two competing models differ by the presence of feedback connections, allowing the investi-
gator to compare the evidence for purely feedforward transfer vs. both feedforward and feedback mechanisms. (B) These models differ by which nodes are directly driven by the
experimental stimulus. (C) These models differ by which connections within the model are modulated by experimental factor u(2). Specifically, the investigator can ask whether
the extrinsic connection from region 1, or the intrinsic connection in region 2, or both, are modulated.

experimental manipulation modulated. This design has been used to
explore pathological processes (Daunizeau et al., 2012a,b), treatment
effects (Kahan et al., 2012), as well as physiological cognitive processes
(Urner et al.,, 2013; Vossel et al., 2012). Studies such as these often uti-
lise a 2 x 2 factorial design, whereby one factor is used as a driving
input, and another as a modulatory input (as in the visual perception
example — the visual stimuli acted as a driving input to region 1, and
the drug effect acted as a modulatory input on connection a; 3).

Questions like (3) are typically answered by comparing (using
conventional Student t tests) estimated (posterior) coupling parame-
ters between two matched groups — where, crucially, the models per
se were exactly the same for the two groups. DCMs attempt to model
observed data at a number of regions, thus it is essential (especially
with deterministic assumptions) that comparisons of coupling pa-
rameters (say, in a patient vs. control group) only occurs between
models of the same architecture (models that possess the same re-
gions, inputs and connections).

Since its conception, the DCM framework has been extended,
allowing studies to address more specific questions. For example,
“stochastic DCM” no longer relies on deterministic assumptions and
accounts for random (stochastic) fluctuations in the evolution of
regional activity (Li et al., 2011). This extension can thus be used to
assess the relative contributions of experimental stimulation and
endogenous fluctuations (Daunizeau et al., 2012a,b), or simply model
periods of no task or experimental stimulation (for example, see
Urner et al., 2013). More plausible models also exist for fMRI data, incor-
porating multiple states per region (“two-state DCM” — Marreiros et al.,
2008), as well as non-linear gating effects (“nonlinear DCM” — Stephan
et al., 2008). The added temporal resolution afforded by EEG/MEG data

permits DCM to employ a more rigorous biophysical model (see Box 1),
allowing for inferences to be drawn on state-dependant changes in
presynaptic current, postsynaptic conductance, or even properties of
specific ion channels (Moran et al., 2011a,b). The application of DCM
at these microscopic scales could be used to explain human physiolog-
ical behavioural and cognitive processes, or even pathophysiological
processes in terms of synaptic mechanisms within specific regions of
the brain, in vivo.

You've made it to the end of a DCM paper

Congratulations. If you managed to get here without skipping the
middle bit, you should now have the tools (or at least a crib-sheet —
see Supplementary Table 1) with which to dissect most DCM papers.
Should you wish to probe the statistical and biophysical underpin-
nings of DCM further, as well as explore the limitations and DCM-
friendly experimental design, a recent review critically evaluates these
matters (Daunizeau et al., 2011a,b), and a number of electrophysiolog-
ical validation studies have been published in recent years (Daunizeau
et al, 2012a,b; David et al., 2008). For a comparison with methods
that rest on similar principles, see Friston et al. (2013). In addition,
a glossary of commonly used terms are included (see Supplementary
Table 1), and teaching material (videos and example datasets) is
available online (http://www. fil.ion.ucl.ac.uk/spm/course/). Important-
ly, although the theory behind these analyses is complicated, imple-
mentation is not; DCM analyses can be executed through the standard
SPM graphical user interface. More practical guides to employing
these analyses in patient and control populations have been published
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Fig. 4. The relative complexities of modelling fMRI and EEG/MEG/LFP data. (A) The basic f/MRI model, with a single intrinsic connection, and non-specific extrinsic afferents and efferents.
(B) The two-state fMRI model containing four intrinsic connections linking the excitatory and inhibitory subpopulation. (C) The convolution based ERP and LFP model — an example of a
biophysical model employed in EEG/MEG/LFP data (adapted from Moran et al., 2009) — is relatively more complex. Firstly, three subpopulations are modelled with five intrinsic connec-
tions. Additionally, extrinsic afferents are categorised as either forward connections arriving at the input population, backward connections arriving at both the output and interneuron
populations, or lateral connections arriving at all three populations. All extrinsic efferents project from the output pyramidal population. Red populations signify glutamatergic cell types,

blue populations signify GABAergic cell types. Dashed lines represent extrinsic connections, solid lines represent intrinsic connections.

(Litvak et al., 2011; Rowe, 2010; Seghier et al., 2010; Stephan et al.,
2010).

Ultimately, research is only interesting to those who understand
it. For ideas and findings to permeate the neuroscience and clinical
communities, it is essential that complicated methods do not become
unfathomable. As time progresses, the method is slowly evolving to
answer new questions. While advances herald new findings, they
have provided additional complexity to DCM. However, these ‘bells
and whistles’ aside, the fundamental aim remains true. DCMs seek
to model how your observed data were generated from immeasur-
able neural activity.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2013.07.008.
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