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Abstract

We show that new methods for measuring effective connectivity allow us to characterise the interactions between brain regions that
underlie the complex interactions among different processing stages of functional architectures.q 2000 Published by Elsevier Science Ltd.

1. Introduction

In the late 19th century the early investigations of brain
function were dominated by the concept of functional segre-
gation. This approach was driven largely by the data avail-
able to scientists of that era. Patients with circumscribed
lesions were found who were impaired in one particular
ability while other abilities remained largely intact. Indeed,
descriptions of patients with different kinds of aphasia (an
impairment of the ability to use or comprehend words),
made at this time, have left a permanent legacy in the
contrast between Broca’s and Wernicke’s aphasia. These
syndromes were thought to result from damage to anterior
or posterior regions of the left hemisphere. In the first part of
the 20th century the idea of functional segregation fell into
disrepute and the doctrine of “mass action“ held sway,
proposing that higher abilities depended on the function of
the brain “as a whole“ (Lashley, 1929). This doctrine was
always going to be unsatisfying. However, with the
resources available at the time it was simply not possible
to make any progress studying the function of the “brain as a
whole“. By the end of the 20th century the concept of func-
tional segregation has returned to domination.

The doctrine is now particularly associated with cognitive
neuropsychology and is enshrined in the concept of double
dissociation (see Shallice, 1988, chap. 10). A double disso-
ciation is demonstrated when neurological patients can be
found with “mirror“ abnormalities. For example, many
patients have been described who have severe impairments

of long-term memory while their short-term memory is
intact. Warrington and Shallice (1969) described the first
of a series of patients who had severe impairments of phono-
logical short-term memory, but no impairments of long-
term memory. This is a particularly striking example of
double dissociation. It demonstrates that different brain
regions are involved in short- and long-term memory.
Furthermore, it shows that these regions can function in a
largely independent fashion. This observation caused major
problems for theories of memory, extant at the time, which
supposed that inputs to long-term memory emanated from
short-term memory systems (e.g. Atkinson & Shiffrin,
1968).

Functional brain imaging avoids many of the problems of
lesion studies, but here too, the field has been dominated by
the doctrine of functional segregation. Nevertheless, it is
implicit in the subtraction method that brain regions
communicate with each other. If we want to distinguish
between brain regions associated with certain central
processes for example, then we will design an experiment
in which the sensory input and motor output is the same
across all conditions. In this way activity associated with
sensory input and motor output will cancel out. The early
studies of reading by Posner and his colleagues are still
among the best examples of this approach (Petersen, Fox,
& Snyder, 1990; Posner, Petersen, Fox, & Raichle, 1988).
The design of these studies was based on the assumption
that reading goes through a single series of discrete and
independent stages; visual shapes are analysed to form
letters, letters are put together to form words, the visual
word form is translated into sound, the sound form is trans-
lated into articulation, and so on. By comparison of suitable
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tasks (e.g. letters vs false font, words vs letters, etc.), each
stage can be isolated and the associated brain region identi-
fied. Although subsequent studies have shown that this char-
acterisation of the brain activity associated with reading is a
considerable oversimplification, the original report still
captures the essence of most functional imaging studies; a
number of discrete cognitive stages are mapped onto
discrete brain areas. Nothing is revealed about how the
cognitive processes interact or how the brain regions
communicate with each other. If word recognition really
did depend on the passage of information through a single
series of discrete stages we would at least like to know the
temporal order in which the associated brain regions were
engaged. Some evidence comes from EEG and MEG
studies. In fact, we know that word recognition depends
upon at least two parallel routes; one via meaning and one
via phonology (Marshall & Newcombe, 1973). Given this
model we would like to be able to specify the brain regions
associated with each route and have some measure of the
strengths of the connections between these different regions.

In this article we shall show that new methods for measur-
ing effective connectivity allow us to characterise the inter-
actions between brain regions which underlie the complex
interactions among different processing stages of functional
architectures.

2. Definitions

In the analysis of neuroimaging time-series (i.e. signal-
changes in a set of voxels, expressed as a function of time),
functional connectivity is defined as thetemporal correla-
tions between spatially remote neurophysiological events
(Friston, Frith, Liddle, & Frackowiak, 1993). This definition
provides a simple characterisation of functional interactions.
The alternative is effective connectivity (i.e.the influence
one neuronal system exerts over another) (Friston, Frith, &
Frackowiak, 1993). These concepts originated in the analy-
sis of separable spike trains obtained from multiunit elec-
trode recordings (Aertsen & Preissl, 1991; Gerstein &
Perkel, 1969). Functional connectivity is simply a statement
about the observed correlations; it does not comment on
how these correlations are mediated. For example, at the
level of multiunit micro-electrode recordings, correlations
can result fromstimulus-locked transients, evoked by a
common afferent1 input, or reflectstimulus-induced oscilla-
tionsand phasic coupling of neural assemblies, mediated by
synaptic connections (Gerstein, Bedenbaugh, & Aertsen,
1989). Effective connectivity is closer to the notion of a
connection, either at a synaptic (cf. synaptic efficacy) or
cortical level. Although functional and effective connectiv-
ity can be invoked at a conceptual level in both neuroima-
ging and electrophysiology they differ fundamentally at a

practical level. This is because the time-scales and nature of
neurophysiological measurements are very different
(seconds vs milliseconds and hemodynamic vs spike trains).
In electrophysiology it is often necessary to remove the
confounding effects of stimulus-locked transients (that
introduce correlationsnot causally mediated by direct
neural interactions) in order to reveal an underlying connec-
tivity. The confounding effect of stimulus-evoked transients
is less problematic in neuroimaging because propagation of
signals from primary sensory areas onwards is mediated by
neuronal connections (usually reciprocal and interconnect-
ing). However, it should be remembered that functional
connectivity is not necessarily due to effective connectivity
(e.g. common neuromodulatory input from ascending
aminergic neurotransmitter systems or thalamo-cortical
afferents) and, where it is, effective influences may be indir-
ect (e.g. polysynaptic relays through multiple areas). In this
article we will only focus on effective connectivity. More
details about functional connectivity can be found in Fris-
ton, Frith, Liddle et al. (1993).

3. Effective connectivity

3.1. A simple model

Effective connectivity depends on two models: a mathe-
matical model, describing “how” areas are connected and a
neuroanatomical model describing “which” areas are
connected. We shall consider linear and non-linear models.
Perhaps the simplest model of effective connectivity
expresses the hemodynamic change at one voxel as a
weighted sum of changes elsewhere. This can be regarded
as a multiple linear regression, where the effective connec-
tivity reflects the amount of regional cerebral blood flow
(rCBF) variability, at the target region, attributable to
rCBF changes at a source region. As an example, consider
the influence of other areasM on areaV1. This can be
framed in a simple equation:

V1� Mc 1 e �1�
whereV1 is an × 1 column vector withn scans,M is an × m
matrix withm regions andn observations (scans),c is am×
1 column vector with a parameter estimate for each region
ande is a vector of error terms.

Implicit in this interpretation is a mediation of the influ-
ence among brain regions by neuronal connections with an
effective strength equal to the (regression) coefficientsc.
This highlights the fact that the linear model assumes that
the connectivity is constant over the whole range of activa-
tion and does not depend on input from other sources.

Experience suggests that the linear model can give fairly
robust results. One explanation is that the dimensionality
(the number of things that are going on) of the physiological
changes can be small by experimental design. In other
words the brain responds to simple and well-organised
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experiments in a simple and well-organised way. Generally,
however, neurophysiological interactions are non-linear and
the adequacy of linear models must be questioned (or at
least qualified). Consequently we will focus on a non-linear
model of effective connectivity (Friston, Ungerleider,
Jezzard, & Turner, 1995).

Reversible cooling experiments in monkey visual cortex,
during visual stimulation, have demonstrated that neuronal
activity in V2 depends on forward inputs fromV1. Conver-
sely neuronal activity inV1 ismodulatedby backward or re-
entrant connections fromV2 to V1 (Girard & Bullier, 1988;
Sandell & Schiller, 1982; Schiller & Malpeli, 1977). Reti-
notopically corresponding regions ofV1 andV2 are recipro-
cally connected in the monkey.V1 provides a crucial input
to V2, in the sense that visual activation ofV2 cells depends
on input fromV1. This dependency has been demonstrated
by deactivating (reversibly cooling)V1 while recording
from V2 during visual stimulation. In contrast, coolingV2
has a moremodulatoryeffect onV1 activity. The cells inV1
that were most affected byV2 deactivation were in the infra-
granular layers, suggestingV2 may use this pathway to
modulate the output fromV1 (Sandell & Schiller, 1982).
Because, in the absence ofV1 input, these re-entrant
connections do not constitute an efficient drive toV2 cells,
their role is most likely “to modulate the information
relayed through area 17”.

To examine the interactions betweenV1 andV2, using
fMRI in humans, it is possible to use a non-linear model of
effective connectivity, extended to include a modulatory

interaction (Eq. (1)):

V1� M·cO 1 diag�V1�McM 1 e �2�
where diag(V1) refers to a diagonal matrix with elements in
the vectorV1; this premultiplies the (scan× region) matrix
M so that each region’s contribution to the model is affected
by the activity inV1. This model has two terms that allow
for the activity in areaV1 to be influenced by the activity in
other areasM (our hypothesis being thatV2 is prominent
amongst those areas). The first represents an effect that
depends only on afferent input from other areasM. This is
the activity in M scaled bycO. The coefficients incO are
referred to asobligatoryor driving connection strengths, in
the sense that a change in areasM results in an obligatory
response in areaV1. This is similar toc in the simple linear
model above. Conversely, the second term reflects amodu-
latory influence of areasM on areaV1. The coefficient
determining the size of this effect (cM) is referred to as a
modulatory connection strength, because the overall effect
depends on both the afferent input (M·cM) and intrinsic
activity in V1. This effect can be considered as a greater
responsiveness ofV1 to inputs with higher intrinsic activa-
tion of V1.

This intrinsic activity-dependent effect, determined by
the value ofcM, provides an intuitive sense of how to esti-
matecM. Imagine one were able to “fix” the activity inV1 at
a low level and measure the connectivity between the
regions inM andV1 assuming a simple linear relationship
[Eq. (1)]: a value for the sensitivity ofV1 to changes

C. Büchel, K. Friston / Neural Networks 13 (2000) 871–882 873

Fig. 1. Maps of the estimates of obligatory and modulatory connection strengths to rightV1. Top left: anatomical features of the coronal data used. This image
is a high-resolution anatomical MRI scan of the subject that corresponds to the fMRI slices. The box defines the position of a sub-partition of the fMRI time-
series selected for analysis. Top right: the location of the reference voxel designated as rightV1 (white dot). This location is shown on a statistical parametric
map of physiological variance (calculated for each voxel from the time-series of 60 scans). Lower left and lower right: maps ofcO andcM. The images have
been scaled to unit variance and thresholded atp� 0:05 (assuming, under the null hypothesis of no effective connectivity, the estimates have a Gaussian
distribution). The reference voxel inV1 is depicted by a circle. The key thing to note is thatV1 is subject to modulatory influences from ipsilateral and
extensive regions ofV2.



elsewhere could be obtained, sayc1. Now, if the procedure
were repeated withV1 activity fixed at ahigh level, a second
(linear) estimate would be obtained, sayc2. In the presence
of a substantial modulatory interaction between regions in
M andV1 the second estimate (c2) will be higher than the
first (c1). This is because the activity intrinsic toV1 is higher
andV1 should be more sensitive to inputs. In shortc2 2 c1

provides an estimate of the modulatory influence onV1
(similarly c1 1 c2 is related tocO). By analogy to reversible
cooling which allows one to remove the effects of isolated
cortical regions, we “fix” activitypost hocby simply select-
ing a subset of data in which theV1 activity is confined to
some small range (high or low activity).

A relevant example analysis is now described. The data
used in this analysis were a time-series of 64 gradient-echo
EPI 5 mm coronal slices through the calcarine sulcus and
extrastriate areas. Images were obtained every 3 s from a
normal male subject using a 4 T whole body system. Photic
stimulation (at 16 Hz) was provided by goggles fitted with
light-emitting diodes. The stimulation was off for the first
30 s, on for the second 30 s, off for the third, and so on. The
first four scans were removed to eliminate magnetic satura-
tion effects and the remainder were realigned.

A reference voxel was chosen in rightV1 and the effec-
tive connection strengthscM were estimated allowing a map
of cM (andcO) to be constructed. This map provides a direct
test of the hypothesis concerning the topography and regio-
nal specificity of modulatory influences onV1. The lower
row in Fig. 1 shows maps ofcO and cM (neurological
convention — rightV1 is marked); these reflect the degree
to which the area exerts an obligatory (left) or modulatory
(right) effect onV1 activity. These maps have been thre-
sholded at 1.64 after normalization to a standard deviation
of unity. This corresponds to an uncorrected threshold of
p , 0:05:

The obligatory connections to the reference voxel derive
mainly fromV1 itself, both ipsilaterally and contralaterally
with a small contribution from contiguous portions ofV2.
The effective connectivity from contralateralV1 should not

be over-interpreted given that: (i) the source of many affer-
ents toV1 (the lateral geniculate nuclei) were not included in
the field of view; and that (ii) this finding can be more parsi-
moniously explained by “common input”. As predicted, and
with remarkable regional specificity, the modulatory connec-
tions were most marked from ipsilateralV2, dorsal and
ventral to the calcarine fissure (note that “common input“
cannot explain interactions betweenV1 andV2 because the
geniculate inputs are largely restricted toV1).

3.1.1. Functional asymmetry in V2–V1 and V1–V2
modulatory connections

To address functional asymmetry2 in terms of forwards
and backwards modulatory influences the modulatory
connection strengths between two extended regions (two
5 × 5 voxel squares) in ipsilateralV1 andV2 were exam-
ined. The estimates of effective connection strengths were
based on hemodynamic changes in all areas and the subset
of connections between the two regions were selected to
compare the distributions of forward and backward modu-
latory influences. Fig. 2 shows the location of the two
regions (this time on the left) and the frequency distribution
(i.e. histogram) of the estimates for connections from the
voxels in theV1 box to theV2 box (broken line) and the
corresponding estimates for connections from voxels in
the V2 box toV1 (solid line). There is a remarkable disso-
ciation, with backward modulatory effects (V2–V1) being
much greater than forward effects (V1–V2). This can be
considered a confirmation of the functional asymmetry
hypothesis.

3.2. Structural equation modelling

The simple model above was sufficient to analyse effec-
tive connectivity to one region at a time (e.g.V1 orV2). We
will now introduce structural equation modelling as a tool
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Fig. 2. Graphical presentation of a direct test of the hypothesis concerning the asymmetry between forward and backwardV1–V2 interactions. Left: a map of
physiological variance showing the positions of two boxes defining regions in leftV1 andV2. The broken lines correspond (roughly) to the position of theV1/
V2 border according to the atlas of Talairach and Tournoux (1988). The value ofcM was computed for all voxels in each box and normalized to unity over the
image. The frequency distribution ofcM connecting the two regions is presented on the right. The modulatory backward connections (V2–V1, solid line) are
clearly higher than the modulatory forward connections (V1–V2, broken line).

2 Here we are referring to asymmetry in connections, not asymmetry
between hemispheres.



allowing for more complicated models comprising many
regions of interest and demonstrate how non-linear interac-
tions are dealt with in this context. The basic idea behind
structural equation modelling (SEM) differs from the usual
statistical approach of modelling individual observations. In
multiple regression or AnCova models the regression coef-
ficients derive from the minimisation of the sum of squared
differences of the predicted and observed dependent vari-
ables (i.e. activity in the target region). Structural equation
modelling approaches the data from a different perspective;
instead of considering variables individually the emphasis
lies on the variance–covariance structure.3 Thus models are
solved in structural equation modelling by minimising the
difference between the observed variance-covariance struc-
ture and the one implied by a structural or path model. In the
past few years structural equation modelling has been
applied to functional brain imaging. For example McIntosh
et al. (1994) demonstrated the dissociation between ventral
and dorsal visual pathways for object and spatial vision
using structural equation modelling of PET data in the
human. In this section we will focus on the theoretical back-
ground of structural equation modelling and demonstrate
this technique using fMRI.

In terms of neuronal systems a measure of covariance
represents the degree to which the activities of two or
more regions are related (i.e. functional connectivity). The
study of variance–covariance structures here is much
simpler than in many other fields; the interconnection of
the dependent variables (regional activity of brain areas)
is anatomically determined and the activation of each region
can be directly measured with functional brain imaging.
This represents a major difference to “classical” structural
equation modelling in the behavioural sciences, where
models are often hypothetical and include latent variables
denoting rather abstract concepts like intelligence.

As mentioned above, structural equation modelling mini-
mises the difference between the observed or measured
covariance matrix and the one that is implied by the struc-
ture of the model. The free parameters (path coefficients or
connection strengthsc above) are adjusted to minimise the
difference4 between the measured and modelled covariance
matrix (see Bu¨chel & Friston, 1997) for details).

An important issue in structural equation modelling is the
determination of the participating regions and the underly-
ing anatomical model. Several approaches to this issue can
be adopted. These include categorical comparisons between
different conditions, statistical images highlighting
structures of functional connectivity and non-human elec-

trophysiological and anatomical studies (McIntosh &
Gonzalez-Lima, 1994).

With respect to anatomical connectivity in humans the
advent of new MR techniques promises a better character-
isation of neuronal connectivity in humans. Diffusion tensor
imaging (DTI) measures the anisotropy of diffusion in the
brain. The main anisotropy exists in the white matter
because the orientation of neuronal fibres (axons) allows
molecules to diffuse easier along the fibre than in other
directions. Therefore the main direction of the diffusion
tensor reflects the underlying orientation of white matter
tracts. Through tracing algorithms it is now possible to
infer the connectivity of individual regions (e.g. activations
derived from an fMRI study) in an individual brain.

A model is always a simplification of reality: exhaus-
tively correct models either do not exist or would be too
complicated to understand. In the context of effective
connectivity one has to find a compromise between
complexity, anatomical accuracy and interpretability.
There are also mathematical constraints on the model; if
the number of free parameters exceeds the number of
observed covariances the system is underdetermined and
no single solution exists.

Each estimated model can be analysed to give an overall
goodness-of-fit measure, for use when comparing different
models with each other. A “nested model” approach can be
used to compare different models (e.g. data from different
groups or conditions) in the context of structural equation
modelling. A so-called “null-model” is constructed where
the estimates of the free parameters are constrained to be the
same for both groups. The alternative model allows free
parameters to differ between groups. The significance of
the differences between the models is expressed by the
difference of the goodness-of-fit statistic. Consider the
following hypothetical example. Subjects are scanned
under two different conditions, e.g. “attention” and “no
attention”. The hypothesis might be that within a system
of regions A, B, C and D, the connectivity between A and
B is different under the two attentional conditions. To deter-
mine whether the difference in connectivity is statistically
significant, we estimate the goodness-of-fit measure for two
models: model 1 allows the connectivity between A and B
to take different values for both conditions. Model 2
constrains the path coefficient between A and B to be
equal for “attention” and “no attention”. If the change of
connectivity between “attention” and “no attention” for the
connection of A and B is negligible, the constrained model
(Model 2) should fit the data equally well compared to the
free model (Model 1). We can now infer whether the differ-
ence of the two goodness-of-fit measures is significant. Non-
linear models can also be accommodated in the framework
of SEM by introducing additional variables containing a
non-linear function (e.g.f �x� � x2� of the original variables
(Kenny & Judd, 1984). Interactions of variables can be
incorporated in a similar fashion, wherein a new variable,
containing the product of the two interacting variables, is
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3 The variance–covariance structure describes in detail the dependencies
between the different variables (in this case, the measured regional
responses to stimulation).

4 The free parameters are estimated by minimising a function of the
observed and implied covariance matrix. To date the most widely used
objective function in structural equation modelling is the maximum like-
lihood (ML) function.



introduced as an additional influence. This is similar to the
approach used in the previous section, where the interaction
was expressed by the influence of the product ofV1 andV2
onV1. We will now demonstrate these ideas using an exam-
ple. More details of structural equation modelling, including
the operational equations can be found in Bu¨chel and Fris-
ton (1997).

3.2.1. Example — learning
In this first example we were interested in changes in

effective connectivity over time as expected during paired
associates learning (Bu¨chel, Coull, & Friston, 1999). In the
case of object-location memory several functional studies
have demonstrated activation of ventral occipital and
temporal regions during the retrieval of object identity
and, conversely, increased responses in dorsal parietal
areas during the retrieval of spatial location (Milner, Johns-
rude, & Crane, 1997). These results suggest domain-specific
representations in posterior neocortical structures, closely
related to those involved in perception, a finding that

accords with the segregation of ventral and dorsal pathways
in processing categorical or spatial stimulus features,
respectively. Another phenomenon observed in some learn-
ing studies is a decrease of neural responses (i.e. adaptation)
to repeated stimulus presentations. This repetition suppres-
sion has been replicated consistently in primate electrophy-
siological and human functional imaging studies
(Desimone, 1996). For object-location learning, it is intui-
tively likely that two specialised systems need to interact to
establish an association. Domain-specific representations or
repetition suppression are not sufficient to account for this
associative component. In other words, functional segrega-
tion and localised response properties cannot account for
associative learning alone.

In our fMRI experiment, decreases in activation during
learning, indicative of repetition suppression, were observed
in several cortical regions in the ventral and dorsal visual
pathway. Within the framework of repetition suppression it
has been hypothesised that decreases in neural responses are
a secondary result of enhanced response selectivity (Wiggs
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Fig. 3. Changes in effective connectivity over time in paired associates learning: (a) the design of the study. Blocks of “encoding” and “retrieval” were
alternated by control conditions. Subjects had to perform three individual learning sessions, to avoid the confounding effect of time. (b) The behavioural
performance data for each of the six subjects averaged across all three learning sessions. (c) The anatomical model. Processing of object identity ismainly a
property of the ventral visual pathway, whereas object location is a property of the dorsal stream. We focussed on the interstream connections (mainly PP to
ITp) based on the hypothesis that learning the association of object identity and spatial location will lead to an increase in effective connectivitybetween the
ventral and the dorsal stream.



& Martin, 1998). By analogy to the development and
plasticity of cortical architectures, this refined selectivity
is likely to be due to changes in effective connectivity within
the system at a synaptic level. We explicitly addressed this
notion by characterising time-dependent changes in effec-
tive connectivity during learning.

The experiment was performed on a 2 T MRI system
equipped with a head volume coil. fMRI images were
obtained every 4.1 s with echo-planar imaging (48 slices
in each volume). Six subjects had to learn and recall the
association between 10 simple line drawings of real-world
objects and 10 locations on a screen during fMRI. Each
learning trial consisted of four conditions, “Encoding”,
“Control”, “Retrieval” and “Control” (Fig. 3a). The beha-
vioural data acquired during “Retrieval” demonstrated that
all six subjects were able to learn the association between
object identity and spatial location, for all 10 objects, within
eight learning blocks, as indicated by the ensuing asympto-
tic learning curves (Fig. 3b).

The structural model used in the analysis embodies
connections within and across ventral and dorsal visual
pathways and was based on anatomical studies in primates
(Fig. 3c). Primary visual cortex was modelled as the origin
of both pathways. In addition to “interstream” connections
between dorsal extrastriate cortex (DE) and the fusiform
region (ITp) and between the posterior parietal cortex
(PP) and ITp, we included direct connections based on a
hierarchical cortical organisation. Given our hypothesis
relating to changes in effective connectivity between dorsal
and ventral pathways, the path analysis focused on the

connection between posterior parietal cortex (PP, dorsal
stream) and posterior inferotemporal cortex (ITp, ventral
stream). We divided each learning session into EARLY
(first part) and LATE observations (second part) and esti-
mated separate path coefficients for each partition.

The path coefficient between PP and ITp increased signif-
icantly during learning in the group�p , 0:05� and was
confirmed by an analysis of individual subjects showing
an increase in effective connectivity between PP and ITp
of 0.27. In contrast to the connections between streams,
connections within the dorsal pathway decreased over time.

The estimated change in connectivity from PP to ITp
clearly depended on the cut-off point between EARLY
and LATE. To unequivocally establish a relationship
between neurophysiologically mediated changes in connec-
tivity and behavioural learning, we examined the relation-
ship between the temporal pattern of effective connectivity
changes and learning speed for all sessions and subjects. We
estimated the differences in effective connectivity for seven
EARLY and LATE partitions, by successively shifting the
cut-off. The cut-off time at which the connectivity change
peaked was used as a temporal index of changes in effective
connectivity (i.e. plasticity). The significant regression ofk,
a measure of learning speed,5 on this plasticity index indi-
cated that for sessions showing fast learning (i.e. highk) the
maximum difference in path coefficients between PP and
ITp was achieved earlier in the session (i.e. EARLY
comprises less scans relative to LATE) (Fig. 4). In other
words, the temporal pattern of changes in effective connec-
tivity strongly predicted learning or acquisition.

3.2.2. Example — attention
Electrophysiological and neuroimaging studies have

shown that attention to visual motion can increase the
responsiveness of the motion-selective cortical areaV5
(O’Craven & Savoy, 1995; Treue & Maunsell, 1996) and
the posterior parietal cortex (PP) (Assad & Maunsell, 1995).
Increased or decreased activation in a cortical area is often
attributed to attentional modulation of the cortical projec-
tions to that area. This leads to the notion that attention is
associated with changes in connectivity.

Here we present fMRI data from an individual subject,
scanned under identical visual motion stimulus conditions,
while changing only the attentional component of the tasks
employed. First, we identify regions that show differential
activations in relation to attentional set. In the second stage,
changes in effective connectivity to these areas are assessed
using structural equation modelling. Finally, we show how
these attention-dependent changes in effective connectivity
can be explained by the modulatory influence of parietal
areas using a non-linear extension of structural equation
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Fig. 4. Changes in effective connectivity predict learning. This graph shows
the correlation between the temporal index of changes in effective connec-
tivity and learning. The temporal index is defined as the time of a maximum
increase in effective connectivity between PP and ITp, e.g. a temporal index
of 3 indicates that the maximum increase in effective connectivity occurred
between the third and the fourth block. The numbers denote the subject
from which this temporal index of effective connectivity was obtained.
Each subject was scanned during three independent learning sessions,
therefore each number appears three times. A negative slope means that
the maximum increase in effective connectivity occurs earlier in fast
learning.

5 All individual behavioural learning curves were well approximated by
the function 12 e2kx where 0, k , 1 indexes learning speed. Small
values ofk indicate slower learning.



modelling. The specific hypothesis we addressed was that
parietal cortex could modulate the inputs fromV1 to V5.

The experiment was performed on a 2 T MRI system
equipped with a head volume coil. fMRI images were
obtained every 3.2 s with echo-planar imaging (32 slices
in each volume). The subject was scanned during four
different conditions: “fixation”, “attention”, “no attention”
and “stationary”. Each condition lasted 32 s giving 10
volumes per condition. We acquired a total of 360 images.
During all conditions the subjects looked at a fixation point
in the middle of a screen. In this section we are only inter-
ested in the two conditions with visual motion (“attention”
and “no attention”), where 250 small white dots moved
radially from the fixation point, in random directions,
towards the border of the screen, at a constant speed of
4.78 per second. The difference between “attention” and
“no attention” lay in the explicit command given to the
subject shortly before the condition: “just look” indicated
“no attention” and “detect changes” the “attention” condi-
tion. Both visual motion conditions were interleaved with
“fixation”. No response was required.

Regions of interest (ROI) were defined by categorical
comparisons using an output statistical image (“SPM{Z}”)
comparing “attention” and “no attention” and comparing
“no attention” and “fixation”. As predicted, given a stimulus
consisting of radially moving dots, we found activation of
the lateral geniculate nucleus (LGN), primary visual cortex
(V1), motion sensitive areaV5 and the posterior parietal

complex (PP). For the subsequent analysis of effective
connectivity, we defined ROI with a diameter of 8 mm,
centred around the most significant voxel as revealed by
the categorical comparison. A single time-series, represen-
tative of this region, was defined by the first eigenvector of
all the voxels in the ROI (Bu¨chel & Friston, 1997).

Our model of the dorsal visual stream included the LGN,
primary visual cortex (V1), V5 and the posterior parietal
complex (PP). Although connections between regions are
generally reciprocal, for simplicity we only modelled
unidirectional paths.

To assess effective connectivity in a condition-specific
fashion, we used time-series that comprised observations
during the condition in question. Path coefficients for both
conditions (“attention” and “no attention”) were estimated
using a maximum likelihood function. To test for the impact
of changes in effective connectivity between “attention” and
“no attention”, we defined a free model (allowing different
path coefficients betweenV1 andV5 for attention and no
attention) and a constrained model (constraining theV1!
V5 coefficients to be equal). Fig. 5 shows the free model and
the estimated path coefficients. The connectivity between
V1 and V5 increases significantly during attention. Note
that there is also a significant difference in connectivity
betweenV5 and PP.

The linear path model comparing “attention” and “no
attention” revealed increased effective connectivity in the
dorsal visual pathway in relation to attention. The question

C. Büchel, K. Friston / Neural Networks 13 (2000) 871–882878

Fig. 5. Structural equation model of the dorsal visual pathway, comparing “attention” and “no attention”. Connectivity between rightV1 andV5 is increased
during “attention” relative to “no attention”. This is also shown for the connection betweenV5 and PP.



that arises is — which part of the brain is capable of modu-
lating this pathway? Based on lesion studies (Lawler &
Cowey, 1987) and on the system for directed attention as
described in Mesulam (1990), the posterior parietal cortex is
hypothesised to play such a modulatory role.

We extended our model accordingly to allow for non-
linear interactions, testing the hypothesis that the PP acts
as a moderator of the connectivity betweenV1 and V5.
Assuming a non-linear modulation of this connection, we
constructed a new variable “V1PP” in our analysis. This
variable, mediating the interaction, is simply the time-series
from regionV1 multiplied (element by element) by the time-
series of the right posterior parietal region.

The influence of this new variable onV5 corresponds to
the influence of the posterior parietal cortex on the connec-
tion betweenV1 andV5 (i.e. the influence ofV1 on V5 is
greater when activity in PP is high). The model is shown in
Fig. 6. Because our non-linear model could accommodate
changes in connectivity between “attention” and “no atten-
tion”, the entire time-series was analysed (i.e. attention-
specific changes are now explicitly modelled by the inter-
action term).

As in the linear model, we tested for the significance of
the interaction effect by comparing a restricted and free
model. In the restricted model the interaction term (i.e.
path fromV1PP toV5) was set to zero. Omitting the inter-
action term led to a significantly reduced model fit�p ,
0:01�; indicating the predictive value of the interaction term.

The presence of an interaction effect of the PP on the
connection betweenV1 andV5 can also be illustrated by a
simple regression analysis. If PP shows a positive modula-
tory influence on the path betweenV1 andV5, the influence
of V1 onV5 should depend on the activity of PP. This can be
tested, by splitting the observations into two sets, one

containing observations in which PP activity is high and
another one in which PP activity is low. It is now possible
to perform separate regressions ofV5 onV1 using both sets.
If the hypothesis of positive modulation is true, the slope of
the regression ofV5 on V1 should be steeper under high
values of PP. This approach is comparable to the one
outlined in the first section, where we used high and low
values to demonstrate a modulatory effect of activity intrin-
sic toV1 on the influenceV2 has overV1.

3.3. Variable parameter regression

As demonstrated in previous sections, the basic linear
model can be seen as a linear regression. The regression
coefficient is then interpreted as a measure of the connectiv-
ity between areas. This interpretation of course implies that
the influence is mediated by neural connections with an
effective strength equal to the regression coefficient. Using
this approach one immediately makes the assumption that
the effective connectivity does not change over observa-
tions, because only a single regression coefficient for the
whole time-series is estimated. This is unsuitable for the
assessment of effective connectivity in functional imaging,
as the goal in some experiments is to demonstrate changes
in effective connectivity, for instance as a function of differ-
ent conditions (e.g. “attention” and “no attention”) or
simply time itself. In the framework of regression analysis
there are three ways around this problem. Firstly, one could
split up the data in different groups according to the experi-
mental condition (e.g. “attention” and “no attention”) and
then test for the difference of the regression coefficients.
However, we may not know a priori the time-course of
the changes that allow us to split the data in this way. A
second, more general solution is to expand the explanatory
variable in terms of a set of basis functions to account for
changes in connectivity. Here we will present another alter-
native, variable parameter regression (VPR), that allows one
to characterise the variation of the regression coefficient
using the framework of state-space models and the Kalman
filter (Kalman, 1960).

3.3.1. Mathematical background
Consider the classical regression model

y� xb 1 u �3�
wherey is the measured data vector,x is a vector of expla-
natory variables andb is the unknown parameter. Usuallyb
is estimated as

b̂ � pinv�x�y �4�
However b can also be estimated recursively with the
advantage that inversion of a smaller matrix is necessary.
This approach is known as recursive least squares (Harvey,
1993). This basic model is now extended to allowb to
evolve over time. Variable parameter regression assumes
T ordered scalar observations (y1,…,yT) generated by the
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Fig. 6. Structural equation model of the dorsal visual pathway incorporating
the interaction of right PP on the connection from rightV1 to V5.



model:

yt � xtbt 1 ut; t � 1;…;T; �5�

ut , N�0�;s 2 �6�

wherext is ann-dimensional row vector of known regressors
andb t is ann-dimensional column vector of unknown coef-
ficients that corresponds to estimates of effective connectiv-
ity. ut is drawn from a Gaussian distribution. All
observations are expressed as deviations from the mean.

A recursive algorithm known as the Kalman filter
(Kalman, 1960) can now be applied to estimate the state-
variable (b ) at each point in time and also allows one to
estimate the log-likelihood function of the model. A numer-
ical optimisation algorithm is then employed to maximize
the likelihood function with respect toP. As the Kalman
filter is a recursive procedure, the estimation ofb t is based
on all observations up to timet. Therefore, the filtered esti-
mates will be more accurate towards the end of the sample.
This fact is corrected for by the Kalman smoothing algo-
rithm which is employed post hoc and runs backwards in
time, taking account of the information made available after
time t. Details of the Kalman filter and smoothing recursions
can be found in standard textbooks of time-series analysis
and econometrics (e.g. Chow, 1983; Harvey, 1990).

3.3.2. Example — attention to visual motion
To illustrate VPR we use the single-subject data set from

the attention-to-visual-motion study. We concentrate on the
effect of attention on the connection between the motion
sensitive areaV5 and the PP cortex in the right hemisphere.
Using structural equation modelling, we have demonstrated
that it is principally this connection, in the dorsal visual
stream, that is modulated by attention (Bu¨chel & Friston,
1997). In the current analysis we were interested whether
variable parameter regression was capable of reproducing
these findings. We therefore assessed the effective connec-
tivity b t by regressing PP onV5. An alternate direction
search, numerical optimisation gave a chi-squared statistic
of 56.4. We therefore had to reject the null-hypothesis of no
variation at the 5% level.P was estimated to be 0.074 and
s 2 was 0.23. The ordinary regression coefficientb for the
model y� xb 1 u was estimated at 0.73. Fig. 7a and b
shows the trajectories of the smoothed and filtered estimates
b̂ t�T� together with the associated standard errors. It is
clearly evident thatb̂ t is higher during the “attention”
conditions relative to the “no attention” conditions. Fig.
7d relates our technique to an ordinary regression. In this
analysis we constrained the variance termP to zero and re-
estimatedb t. The trajectory ofb̂ t now converges tob , the
ordinary regression coefficient of the modely� xb 1 u: As
expected the smoothed estimates are simply a constant (i.e.
b � 0:73�:
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Fig. 7. (a), (b) The trajectory of the smoothed and filtered estimatesb̂ t�T� together with the associated standard errors for the variable parameter estimation of
effective connectivity betweenV5 and PP. It is evident that̂b t (the dynamic regression coefficient) is higher during the “attention” conditions relative to the
“no attention” conditions. (c) Areas that significantly covaried with the time-dependent measure of effective connectivity betweenV5 and PP [i.e.b̂ t�T��:
SPM{Z} thresholded atp , 0:001 (uncorrected) overlaid on coronal and axial slices of the subject’s structural MRI. The maximum under the cross-hairs was
at 45, 21, 39 mm,Z � 4: (d) The relationship between our technique and an ordinary regression analysis. In this analysis the variance termP was set to zero
(i.e. fixed regression model). The trajectory ofb̂ t now converges tob�� 0:73�; the regression coefficient of the modely� xb 1 u:



We interpret b̂ t as an index of effective connectivity
between areaV5 and the posterior parietal cortex. In our
example, the connection betweenV5 and PP resembles the
site of attention modulation. This leads to an interesting
extension, where one might hypothesise that a third region
is responsible for the observed variation in effective connec-
tivity indicated by the trajectory of̂b t�T� In other words
after specifying thesiteand nature of attentional modulation
we now want to know the location of thesource. We
addressed this by usinĝb t�T� as an explanatory variable
in an ordinary regression analysis to identify voxels that
covaried with this measure of effective connectivity. Fig.
7c shows the result of this analysis. Among areas with statis-
tically significant (p , 0:001; uncorrected) positive covar-
iation was the dorsolateral prefrontal cortex and the anterior
cingulate cortex. This result confirms the putative modula-
tory role of the dorsolateral prefrontal cortex in attention to
visual motion, as suggested by previous analyses (Bu¨chel &
Friston, 1997).

3.4. Effective connectivity vs categorical comparisons

One obvious advantage of the assessment of effective
connectivity is that it allows one to test hypotheses about
the integration of cortical areas. For example, in the
presence of modulation, the categorical comparison
between “attention” and “no attention” might reveal prestri-
ate, parietal and frontal activations. However, the only state-
ment possible is that these areas show higher cortical
activity during the “attention” condition as opposed to the
“no attention” condition. The analysis of effective connec-
tivity revealed two additional results. Firstly, attention
affects the pathway fromV1 to V5 and fromV5 to PP.
Secondly, the introduction of non-linear interaction terms
allowed us to test a hypothesis about how these modulations
are mediated. The latter analysis suggested that the posterior
parietal cortex exerts a modulatory influence on areaV5.

The measurements used in all examples in this work were
hemodynamicin nature. This limits an interpretation at the
level of neuronal interactions. However, the analogy
between the form of the non-linear interactions described
above and voltage-dependent (i.e. modulatory) connections
is a strong one. It is possible that the modulatory impact of
V2 on V1 (and of PP onV5) is mediated by predominantly
voltage-dependent connections. The presence of horizontal
voltage-dependent connections withinV1 has been estab-
lished in cat striate cortex (Hirsch & Gilbert, 1991). We
know of no direct electrophysiological evidence to suggest
that extrinsic backwardV2 to V1 connections are voltage-
dependent; however our results are consistent with this. An
alternative explanation for modulatory effects, which does
not necessarily involve voltage-dependent connections, can
be found in the work of Aertsen and Preissl (1991). These
authors show that effective connectivity varies strongly
with, or is modulated by, background neuronal activity.
The mechanism relates to the efficacy of subthreshold

EPSPs in establishing dynamic interactions. This efficacy
is a function of post-synaptic depolarisation, which in turn
depends on the tonic background of activity.

4. Conclusions

This work has reviewed the basic concepts of effective
connectivity in neuroimaging. We have introduced several
methods to assess effective connectivity, i.e. multiple linear
regression, covariance structural equation modelling and
variable parameter regression. The first example demon-
strated that non-linear interactions can be characterised
using simple extensions of linear models. In the second
example structural equation modelling was introduced as a
device that allows one to combine observed changes in
cortical activity and anatomical models. The first example
of this technique revealed changes in effective connectivity
between the dorsal and the ventral stream over time in a
paired-associates learning paradigm. The temporal pattern
of these changes was highly correlated with individual
learning performance and therefore changes in effective
connectivity predicted learning speed. The second example
of structural equation modelling focused on backwards
modulatory influences of high order areas on connections
among lower order areas. Both examples concentrated on
changes in effective connectivity and allowed us to charac-
terise the interacting areas of the network at a functional
level. Variable parameter regression was then introduced as
a flexible regression technique, allowing the regression
coefficient to smoothly vary over time. Again we confirmed
the backwards modulatory effect of higher cortical areas on
those areas situated lower in the cortical hierarchy.
Although less than a mature field, the approach to neuroi-
maging data, and regional interactions, discussed above is
an exciting endeavour that is starting to attract more and
more attention.
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