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The first step in the spatial normalization of brain
images is usually to determine the affine transforma-
tion that best maps the image to a template image in a
standard space. We have developed a rapid and auto-
matic method for performing this registration, which
uses a Bayesian scheme to incorporate prior knowl-
edge of the variability in the shape and size of heads.
We compared affine registrations with and without
incorporating the prior knowledge. We found that the
affine transformations derived using the Bayesian
scheme are much more robust and that the rate of

convergence is greate I'.  ©1997 Academic Press

INTRODUCTION

In order to average signals from functional brain
images of different subjects, it is necessary to register
the images together. This is often done by mapping all
the images into the same standard space (Talairach
and Tournoux, 1988). Almost all between-subject coreg-
istration or spatial normalization methods for brain
images begin with determining the optimal 9- or 12-
parameter affine transformation that registers the
images together. This step is normally performed auto-
matically by minimizing (or maximizing) some mutual
function of the images. Without constraints and with
poor data, the simple parameter optimization approach
can produce some extremely unlikely transformations.
For example, when there are only a few transverse
slices in the image (spanning the x and y dimensions), it
is not possible for the algorithms to determine an
accurate zoom in the z direction. Any estimate of this
value is likely to have very large errors. Previously in
this situation, it was better to assign a fixed value for
this difficult-to-determine parameter and simply fit for
the remaining ones.

By incorporating prior information into the optimiza-
tion procedure, a smooth transition between fixed and
fitted parameters can be achieved. When the error for a
particular fitted parameter is known to be large, then
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that parameter will be based more upon the prior
information. The approach adopted here is essentially a
maximum a posteriori (MAP) Bayesian approach.

The Methods of this paper begins by explaining the
basic optimization method that is used, before introducing
the principles behind the Bayesian approach. This is
followed by sections on how the errors in the parameter
increments are determined and how the a priori probabil-
ity distributions were derived. The modifications to the
basic iterative scheme in or der to incorporate the prior
information are then presented.

The Results and Discussion illustrate the potential
benefit of the Bayesian approach, by showing both
faster convergence for good data and improved param-
eter estimates for limited data. The paper ends with a
discussion on the implications of a Bayesian approach
for nonlinear image registration.

METHODS

The Basic Optimization Method

The objective is to fit the image f to a template image
g, using a 12-parameter affine transformation (param-
eters p; to pi»). The images may be scaled quite
differently, so we also need to include an additional
intensity scaling parameter (p.3) in the model.

An affine transformation mapping (via matrix M, in
which the matrix elements are a function of parameters
p; and py,) from position X in one image to position y in
another is defined by

Y1 My My Myz Myl X
Y2 My My My3 Myy|X;
Y3 M3z1 M3y M3z Mz, X3

1 0 0 0 1/\1

We refer to this mapping asy = Mx.
The parameters (p) are optimized by minimizing the
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sum of squared differences between the images accord-
ing to the Gauss Newton algorithm as described in
Friston et al. (1995b). The function that is minimized is

E (f(Mx) — P13g(x)))

The optimization method involves generating a lin-
ear approximation to the problem using Taylor’s Theo-
rem, which is solved on each iteration (see Press et al.,
1992, Section 15.5, for a full explanation of the ap-
proach). For iteration n, this can be expressed as
computing

pM= pM-1 — (ATA)"}(ATh), )

where element b; of b is the ith residual (f(Mx;) —
p139(X;)) and element a; j of the Jacobian matrix A is the
derivative of residual b; with respect to parameter p;.
The approximation is most valid when the estimates
are close to the true solution, relative to the smoothness
of the image. Because of this, the images are smoothed
prior to matching.

The rate of change of the residual b; with respect to
the scaling parameter (p,3) is simply —g(X;) (the nega-
tive intensity of image g at x;—the ith sample position).

The derivatives of the residuals with respect to the
spatial transformation parameters (p; to p;,) are ob-
tained by differentiating f (Mx;) — p13g(X;) with respect
to p; to give

af (Mx;)

There are many ways of parameterizing an affine
transformation. The simplest parameters to optimize
are the elements of the transformation matrix. The ith
derivative of the residuals with respect to changes in
element m;, of matrix M is x,;(of (y)/dy;) for elements
m; 1 to mg3, and simply of (y)/dy; for elements m,, to
mg 4, Where y = MX;.

The optimization can, however, be easily reparameter-
ized from parameter set p to parameter set g, simply by
incorporating an additional matrix R such that r; ; =
dp;/dg;. This matrix is recomputed in each iteration.
The iterative scheme would then become g™ = g™ —
(RT(ATA)R) IR(ATDb) (the parentheses indicate the most
efficient way of performing the computations). Ex-
tensions of the approach described in this paper re-
quire this reparameterization, but for simplicity it
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will not be included in the description of the basic
method.

In this implementation, the distance between samples
is every 8 mm (rounded to the nearest whole number of
voxels in image g). Trilinear interpolation of the voxel
lattice (rather than the sampling lattice) is used to
resample the images at the desired coordinates. Gradi-
ents of the images are obtained at the same time, using
a finite difference method on the same voxel lattice. No
assumptions are made about voxel values that lie
outside the field of view of image f. Points where Mx;
falls outside the domain of f are not included in the
computations.

A Bayesian Approach

Bayes' rule is generally expressed in the continuous
form,

p(b|ap)p(ap)
J. pblagp(ay) da

p(ap/b) =

where p(ap) is the prior probability of a, being true,
p(b|ap) is the conditional probability that b is observed
given that a, is true, and p(a,|b) is the Bayesian
estimate of a, being true, given that measurement b
has been made. The expression fq p(blag)p(ag) dq is
included so that the total probability of all possible
outcomes is unity. The maximum a posteriori estimate
for parameters p is the mode of p(ay/b). For our
purposes, p(a,) represents a known prior probability
distribution from which the parameters are drawn,
p(blay) is the likelihood of obtaining the parameters
given the data b, and p(a,|b) is the function to be
maximized. The optimization can be simplified by
assuming that all probability distributions are multidi-
mensional and normal (multinormal), and can there-
fore be described by a mean vector and a covariance
matrix.

When close to the minimum, the optimization be-
comes almost a linear problem. This allows us to
assume that the errors of the fitted parameters (p) can
be locally approximated by a multinormal distribution
with covariance matrix C. We assume that the true
parameters are drawn from an underlying multinormal
distribution of known mean (py) and covariance (Cy).
By using the a priori probability density function (pdf)
of the parameters, we can obtain a better estimate of
the true parameters by taking a weighted average of pg
and p (see Fig. 1):

Po = (Co* + CHHCo'po + C'p). )
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FIG.1. Ahypothetical example with one parameter. The solid Gaussian curve (a) represents the a priori probability distribution (pdf), and
the dashed curve (b) represents a parameter estimate (from fitting to observed data) with its associated certainty. We know that the true
parameter was drawn from distribution (a), but we can also estimate it with the certainty described by distribution (b). Without the MAP
scheme, we would probably obtain a more precise estimate for the true parameter by taking the most likely a priori value, rather than the
value obtained from a fit to the data. The dotted line (c) shows the pdf that would be obtained from a MAP estimate. It combines previously
known information with that from the data to give a more precise estimate.

The estimated covariance matrix of the standard errors
for the MAP solution is then

Cp=(Cot+CH (3)

pp and C, are the parameters that describe the multi-
normal distribution p(a,|b).

Estimating C

In order to employ the Bayesian approach, we need to
compute C, which is the estimated covariance matrix of
the standard errors of the fitted parameters. If the
observations are independent, and each has unit stan-
dard deviation, then C is given by (ATA) 1. In practice,
we don't know the standard deviation of the observa-
tions, so we assume that it is equal for all observations
and estimate it from the sum of squared differences:

I
o? = E (f(Mx;) — P13g(x))) 4)

This gives a covariance matrix (ATA) 1¢?/(1 — J), where
I refers to the number of sampled locations in the
images and J refers to the number of parameters (13 in
this case).

However, complications arise because the images are
smooth, resulting in the observations not being indepen-
dent and a reduction in the effective number of degrees
of freedom (from | — J). We correct for the number of
degrees of freedom using the principles described by
Friston (1995a) [although this approach is not strictly
correct (Worsley and Friston, 1995), it gives an esti-
mate that is close enough for our purposes]. We can
estimate the effective degrees of freedom by assuming

that the difference between f and g approximates a
continuous, zero-mean, homogeneous, smoothed Gauss-
ian random field. The approximate parameter of the
Gaussian point spread function describing the smooth-
ness in direction d (assuming that the axes of the
Gaussian are aligned with the axes of the image
coordinate system) can be obtained by (Poline et al.,
1995):

0.2

= . 5
M7 23 T4 Mx) — g0 ©

Typical values for wy are in the region of 5 to 7 mm.

If the images are sampled on a regular grid in which
the spacing in each direction is sy, the number of
effective degrees of freedom (v) becomes approximately
(I = I)I4(sg/(Wy(27)22)), and the covariance matrix can
now be estimated by:

C = (ATA) 1g?/v. (6)

Note that this only applies when sy < wgy(2m)Y2, other-
wisev=1-J.

Estimating p, and C,

The a priori distribution of the parameters (py, and
C,) was determined from affine transformations esti-
mated from 51 high-resolution T1-weighted brain MR
images (there were originally 53 images, but 2 outliers
were removed because the registration failed due to
poor starting estimates). The subjects were all normal
and right handed and were between 18 and 40 years of
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age (mean age of 25 years). The original group of 53
contained 30 males and 23 females.

The template image used was a high quality T1
image of a single subject that conforms to the space
described by Evans et al. (1993) (illustrated in Fig. 2).
The basic least-squares optimization algorithm was
used to estimate these transformations. Each transfor-
mation matrix was defined from parameters q accord-

FIG. 2. An illustration of the template (below) and an affine
registered image (above). Note that the template is presmoothed to
facilitate faster matching.
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ing to:
0 0 0 q 1 0 0 0
0 1 0 q 0 cos(qq) sin(g,) O
M= 0 0 1 qs % 0 -sin(qs) cos(gy) O
0O 0 0 1 0 0 0 1
cos(gs) O sin(gs) O
0 0 0
“l-sin@) 0 cos@) o
0 0 0 1
cos(gg) sin(gg) O O gy 0 0 O
—sin(gg) cos(gs) O O 0 gg 0 O
o 0 1 0" 0 g O
0 0 0 1 0O 0 0 1
1 g du O
% 0 g, O
0O 0 1 o0
0 0 0 1

The results for the translation and rotation parameters
(q; to gg) are ignored, since these depend only on the
positioning of the subjects in the scanner and do not
reflect variability in head shape and size.

The mean zooms required to fit the individual brains
to the space of the template (parameters g to qy) were
1.10, 1.05, and 1.17 in x (mediolateral direction), y
(anterior—posterior direction), and z (dorsoventral direc-
tion), respectively, reflecting the fact that the template
was larger than the typical head. Histograms of the
values are shown in Fig. 3. The covariance matrix was

0.00210 0.00094 0.00134
0.00094 0.00307 0.00143
0.00134 0.00143 0.00242

giving a correlation coefficient matrix of

1.00 0.37 0.59
0.37 1.00 0.52
059 052 1.00

As expected, these parameters are correlated. This
allows us to partially predict the optimal zoom in z
given the zooms in x and y, a fact that is useful for
spatially normalizing images containing a limited num-
ber of transverse slices.
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FIG. 3. The distribution of the zooms in x, y, and z required to fit 51 brains to a standard space. A histogram of the values and also the

Gaussian curve that best fits the distribution are shown.

The means of the parameters defining shear were
close to 0 (—0.0024, 0.0006, and —0.0107 for 0, Q11,
and q,,, respectively). The variances of the parameters
are 0.000184, 0.000112, and 0.001786, with very little
covariance.

Histograms of the values are shown in Fig. 4. Be-
cause of the symmetric nature of the head, there is very
little shear in any plane other than the y-z plane
(parameter gq,).

For the Bayesian optimization scheme, the values of
po were all set to 0, except for the zoom estimates,
which were assigned values of 1.10, 1.05, and 1.17.
Off-diagonal elements of covariance matrix C, were set
to 0, with the exception of elements reflecting covari-
ances between zooms. The standard deviations of pa-
rameters for translations and rotations were set to
arbitrarily high values of 100 mm and 30°.

Incorporating the Bayesian Approach into the
Optimization

As mentioned previously, when the parameter esti-
mates are close to the minimum, the registration
problem is almost linear. Prior to this, the problem is
nonlinear and covariance matrix C no longer directly
reflects the certainties of the parameter estimates.
However, it does indicate the certainties of the changes
made in the parameter estimates at each iteration, so

this information can still be incorporated into the
iterative optimization scheme.

By combining Egs. (1), (2), and (6), we obtain the
following scheme,

Py’ = (Cot + @) HCo'po + apf Y — B), (7
where a = ATAv/g? and B = ATbv/o2.

Another way of thinking about this optimization
scheme is that two criteria are simultaneously being
minimized. The first is the sum of squares difference
between the images, and the second is a scaled distance
between the parameters and their known expectation.

Stopping Criterion

The optimal solution is no longer that which mini-
mizes the sum of squares of the residuals, so the rate of
change of o2 is not the best indication of when the
optimization has converged. The objective of the optimi-
zation is to obtain a fit with the smallest errors. These
errors are described by the covariance matrix of the
parameter estimates, which in the case of this optimiza-
tion scheme is (« + C,*) L. The “tightness” of the fit is
reflected in the determinant of this matrix, so the
optimal solution should be achieved when the determi-
nant is minimized. In practice we look at the rate of
change of the log of the determinant.
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FIG. 4. Thedistribution of the shears required to fit the 51 brains to a standard space.

RESULTS AND DISCUSSION

Plots of Convergence—with and without
Bayesian Extension

The algorithm was applied to 100 T1-weighted im-
ages, in order to match the images to a T1 template
image. All images were smoothed with a Gaussian
kernal of 8 mm full width at half maximum. The voxels
were reduced to 2 X 2 X 4 mm with a field of view of
256 X 256 X 128 mm in x, y, and z, respectively, in order
to facilitate faster computations.

The optimizations were performed three times: (A)
without the Bayesian scheme, for a 12-parameter affine
transformation, (B) with the Bayesian scheme, for a
12-parameter affine transformation, and (C) without
the Bayesian scheme, for a 6-parameter rigid body
transformation (to demonstrate that the Bayesian
scheme is not simply optimizing a rigid body transfor-
mation).

During the optimization procedure, the images were
sampled approximately every 8 mm. Thirty-two itera-
tions were used, and the value of o2 was recorded for
each iteration. Although we do not propose that conver-
gence should be indicated by o?, it provides a useful
index to demonstrate the relative performance. Fifty of
the subjects were given good starting estimates (i), and
50 were given starting estimates that deviated from the
optimal solution by about 10 cm (ii).

There were two cases from (ii) in which the starting

estimates were insufficiently close to the solution for
either (A) or (B) to converge satisfactorily. These cases
have been excluded from the results.

Figure 5 shows the average o2 for all images plotted
against iteration number. As can be seen from these
plots, curve (B) leads to a more rapid estimation of the
optimal parameters, even though convergence appears

Convergence Convergence
2000 2000
i Vb
| (A) - dashed t\ (A)-dashed
| v
! (B) - solid v\ (B) - solid
915001 1} 21500 (Y
b it (C) — dotted S v 1 (C) - dotted
g | - -_
» 7]
s ©
5 1000 3 1000
[%] 0
@ o
o i
= o
5] I
Lo} (1]
= 500 = 500
0 0
10 20 30 10 20 30

Iteration # Iteration #

FIG. 5. The average o2 for the images plotted against iteration
number. (Left) Given good starting estimates (i). (Right) Given poor
starting estimates (ii). The dashed lines (A) show convergence for a
12-parameter affine transformation without using the Bayesian
scheme. The solid lines (B) show the same, but with the Bayesian
scheme. Convergence for a 6-parameter rigid body transformation (C)
is shown in the dotted lines.
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faster at the start of (A). The plot of convergence for (C)
illustrates the point that the Bayesian method is not
overconstrained and simply optimizing a set of rigid
body parameters.

Figure 6 compares the number of iterations required
by (A) and (B) in order to reduce the o2 to within 1% of
the minimum of both schemes. In several cases of (A),
the optimization had not converged within the 32
iterations. There were only 5 cases where (B) does not
obtain a value for o2 that is as low as that from (A). In 2
of the cases, the results from (A) were very close to
those from (B). However, in the other 3 cases, examina-
tion of the parameter estimates from scheme (A) showed
that it had found a minimum that was clearly not a
proper solution. The zooms determined, after 32 itera-
tions, were (0.96, 0.98, 0.11), (2.10, 0.72, 0.0003), and
(1.09, 0.24, 0.02). These are clearly not correct!

The algorithm requires relatively few iterations to
reach convergence. The speed of each iteration depends
upon the number of sampled voxels. On a SPARC Ultra
2, an iteration takes 1 s when about 26,000 points are
sampled.

Comparisons of Affine Normalization with Limited Data

Occasionally the image that is to be spatially normal-
ized is of poor quality. It may have a low signal to noise
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FIG. 6. The number of iterations in which convergence to within
1% of the minimum mean residual sum of squares had not been
reached. The non-Bayesian scheme (A) is on the x axis, with the
Bayesian scheme (B) on the y axis. Results from optimizations given
good starting estimates are shown as circles, whereas those with bad
starting estimates are shown as crosses.
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FIG. 7. Plots of the parameter estimates from reduced data,
against estimates using the complete data. As expected, the Bayesian
scheme makes little difference for the estimates of the zoom in the x
direction [(a) zoom in X, no Bayes, and (b) zoom in x with Bayes],
whereas the Bayesian scheme heavily biases the zoom in z toward the
mean of the prior distribution [(c) zoom in z, no Bayes, and (d) zoom in
z with Bayes].

ratio, or it may contain only a limited number of slices.
When this is the case, the parameter estimates for the
spatial normalization are likely to be unreliable. Here
we present a further comparison of affine registrations
with and without the incorporation of prior information
[(E) and (D), respectively]. This time, we sampled only
four planes from the images, to simulate an effective
field of view of 16 mm. The optimizations were given
good initial parameter estimates, and the results were
compared with those obtained using the complete data.

The resulting parameter estimates from (D) and (E)
are plotted against those from (B) in Fig. 7. As can be
seen from the plots, where the parameters can be
estimated accurately, the results from (D) and (E) are
similar. However, where there is not enough informa-
tion in the images to determine an accurate parameter
estimate, the results of (E) are properly biased toward
the prior estimate.

Implications for Nonlinear Warping

A Bayesian approach to nonlinear image registration
is nothing new. The incorporation of prior knowledge
about the properties of the allowed warps is fundamen-
tal to all successful nonlinear registration approaches.
Gee et al. (1995) have already described one Bayesian
approach to nonlinear image registration.

For the nonlinear spatial normalization of brain
images prior to statistical analysis, the objective is to
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warp the images such that homologous regions of
different brains are moved as close together as possible.
A high number of parameters are required to encom-
pass the range of possible nonlinear warps. With many
parameters relative to the number of independent
observations, the errors associated with the fit are
likely to be very large. The use of constraints (such as
preserving a one to one mapping between image and
template) can reduce these errors, but they still remain
considerable. For this purpose, the simple minimiza-
tion of differences between the images is not sufficient.
Although the normalized images may appear similar to
each other, the data may in fact have been “overfitted,”
resulting in truly homologous regions being moved
farther apart. Other researchers circumvent this over-
fitting problem by restricting their spatial normaliza-
tion to just an affine transformation. A Bayesian ap-
proach similar to that described here would attempt to
reach an optimum compromise between these two
extremes.

Although the incorporation of an optimally applied
MAP approach into nonlinear registration should have
the effect of biasing the resulting deformations to be
smoother than the true deformations, it is envisaged
that homologous voxels would be registered more closely
than for unconstrained deformations. The measure-
ments above demonstrate that brain lengths vary with
a standard deviation of about 5% of the mean. A
suitable starting point may be to assume that there is
roughly the same variability in the lengths of the
different brain substructures. The relative sizes of
voxels before and after spatial normalization are re-
flected in the derivatives of the fields that describe the
deformation. Therefore, an improved nonlinear spatial
normalization may be achieved by assuming a priori
that these derivatives should have a standard devia-
tion of about 0.05. For deformations that are defined by
a linear combination of smooth basis functions (Friston
et al., 1995b), the derivatives of the deformations are
simply the same linear combination of the derivatives
of the basis functions. It is therefore possible to assign a
covariance matrix describing a prior distribution for
the coefficients of the transformation.

An alternative approach would be to assume that the
relative voxel volumes are drawn from a known log-
normal distribution (and therefore are always positive).
These relative volumes are described by the determi-
nants of the Jacobian of the deformation field. An
assumption of this type will ensure that there will
always be a one to one mapping in the deformation, and
so should be more robust for estimating higher resolu-
tion nonlinear deformations.

The above two models assume that every voxel has
similar deformable properties (see Thompson et al.,
1996, to assess the validity of this assumption). How-
ever, they can both be extended by incorporating infor-
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mation on the distribution of deformation fields from a
number of different subjects. The first of the two models
could incorporate a covariance matrix computed from
real data, whereas the second could utilize some repre-
sentation of the variability of voxel sizes, in the form of
an image (or series of images).

The simple affine transformation was chosen for this
project, as the variability in brain dimensions is simple
to characterize as a multinormal distribution. Unfortu-
nately, the full characterization of a probability density
function describing the a priori distribution of nonlin-
ear warps is not so straightforward. Thompson et al.
(1996) have already begun to characterize normal
morphological variability of the brain in order to iden-
tify structural abnormalities. The variability was de-
rived by estimating nonlinear registrations for a num-
ber of images using a fluid model, and is represented by
the means and variances of the displacements at each
voxel. This representation is able to encode some of the
parameters describing normal variability, but much of
the information is inevitably lost. Le Briquer and Gee
(1997) use a global model to represent the normal
variability of the deformations. The model is con-
structed from the principal components of a number of
previously estimated deformation fields and allows the
incorporation of spatial correlations in the warps. The
next challenge will be to determine an optimum com-
pact form to describe the structural variability and also
to estimate the parameters describing the distribution.
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