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This article has been written in response to Dr. Fred
L. Bookstein’s article entitled ‘“Voxel-Based Morphom-
etry” Should Not Be Used with Imperfectly Registered
Images’ in this issue of NeuroImage. We will address
hree main issues: (i) Dr. Bookstein appears to have
isunderstood the objective of voxel-based morphom-

try (VBM) and the nature of the continuum we re-
erred to. (ii) We agree with him when he states that
ndings from VBM can pertain to systematic registra-
ion errors during spatial normalization. (iii) His ar-
ument about voxelwise tests on smooth data holds in
he absence of error variance, but is of no consequence
hen using actual data. We first review the tenets of
BM, paying particular attention to the relationship
etween VBM and tensor-based morphometry. The

ast two sections of this response deal with the specific
oncerns raised by Dr. Bookstein. © 2001 Academic Press

1. THE OBJECTIVE OF VOXEL-BASED
MORPHOMETRY

Structural magnetic resonance (MR) images of
brains can differ among subjects in many ways. A
useful measure of structural difference among popula-
tions is derived from a comparison of the local compo-
sition of different brain tissue types (e.g., grey matter,
white matter, etc). Voxel-based morphometry (VBM)
has been designed to be sensitive to these differences,
while discounting positional and other large-scale volu-
metric differences in gross anatomy.

VBM was originally devised to detect cortical thin-
ning in a way that was not confounded by volume
changes of the sort that are characterized by classical
volumetric analyses of large brain structures (e.g., the
temporal lobe). It does this by removing positional and
volume differences (down to a specified spatial scale)
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through spatial normalization. Differences in grey
matter density are then detected by comparing the
local intensities of grey matter maps after smoothing.
Since its inception some 5 years ago (Wright et al.,
1995), VBM has become an established tool in mor-
phometry being used to detect cortical atrophy and
differences in slender white matter tracts. The classi-
cal perspective on VBM partitions volume changes into
two spatial scales: (i) macroscopic volume or shape
differences that can be modeled in the spatial normal-
ization procedure and (ii) mesoscopic volume differ-
ences that cannot. The latter persist after normaliza-
tion and are detected after spatial smoothing of grey
matter maps (i.e., partitions or segments)—smoothing
transforms these volume differences into image inten-
sity differences through the partial volume effect.

More recently, this perspective has changed with the
incorporation of an additional step, introduced to com-
pensate for the effect of spatial normalization. When
warping a series of images to match a template, it is
inevitable that volumetric differences will be intro-
duced into the warped images. For example, if one
subject’s temporal lobe has half the volume of that of
the template, then its volume will be doubled during
spatial normalization. This will also result in a dou-
bling of the voxels labeled grey matter. To remove this
confound, the spatially normalized grey matter (or
other tissue class) is adjusted by multiplying by its
relative volume before and after warping. If, warping
results in a region doubling its volume, then the cor-
rection will halve the intensity of the tissue label. This
whole procedure has the effect of preserving the total
amount of grey matter signal in the normalized parti-
tions (Goldszal et al., 1998).2 Classical VBM assumed

2 Note that a uniformly smaller brain will have uniformly lower
grey matter intensities after the correction. Any detected differences
are therefore less regionally specific, unless some kind of “global”
measures are modeled as confounding effects during the statistical
analyses. These could pertain to the total amount of grey matter in
each brain or, more usefully in many cases, to the intracranial
volume of each subject.
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that the warps were so smooth that these volume
changes could be ignored. However, advances in nor-
malization techniques now allow for high-resolution
warps.

If brain images from different subjects can be
warped together exactly,3 then a complete analysis of
the volumetric differences could proceed using only the
derived warps. Expansions and contractions occur
when an image from one subject is warped to match
that of another. These volume changes (hence also the
relative volumes of structures) are encoded by the
warps. One form of tensor-based morphometry (TBM)
involves analyzing these relative volumes (more for-
mally, the Jacobian determinants of the deformation
field) in order to identify regions of systematic volumet-
ric difference. The adjustment step mentioned above
can be considered from the perspective of TBM, in
which volumetric changes derived from the warps are
endowed with tissue specificity. By multiplying the
relative volumes by the tissue class of interest, volu-
metric information about other tissue classes is dis-
counted (i.e., there will be no changes attributed to
grey matter in purely white matter regions). In other
words, the product of grey matter and volume change
has two equivalent interpretations: (i) in VBM it rep-
resents the proportion of the voxel that is grey matter,
having adjusted for the confounding effects of warping
the brains, and (ii) it represents the proportion of vol-
ume change attributable to grey matter.

By including the multiplication step, a continuum is
introduced between the methods of VBM and TBM. At
the extreme where little or no warping is used, most of
the information pertaining to volumetric differences
will be derived from systematic differences in the spa-
tial distribution of the tissue under study. At the other
extreme, where registration between images is exact,
all the volumetric information will be encoded by the
warps (because the normalized partitions will be iden-
tical). The product remains sensitive to differences at
either extreme and can be regarded as an integration
of classical VBM and TBM. This dual perspective is
illustrated in Fig. 1, using brain images of a subject
suffering from Alzheimer’s disease. The data were ob-
tained from the Dementia Research Group (Queen
Square, London, UK). This example illustrates pro-
gressive volumetric changes of CSF, particularly in the
ventricles.

The first column of the figure shows how the later of
the two images was processed by classifying the CSF
(Ashburner and Friston, 2000) and smoothing it using
an isotropic 12-mm FWHM Gaussian kernel. The col-
umn in the center shows the processing of the earlier
image, which was first rigidly registered with the late

3 Registered so that corresponding brain structures are matched,
rather than solving the simpler problem of matching grey matter
with grey matter, white with white, and CSF with CSF.
image and then the CSF was classified and smoothed.
The difference between the smoothed CSF of the two
images can be considered as analogous to VBM, where
spatial normalization is restricted to a rigid body reg-
istration.

The third column shows processing that is analogous
to the augmented approach. After rigid registration,
the early image is precisely warped to match the late
one. The warping method (Ashburner et al., 2000) at-
tempts to estimate exact displacements at every voxel,
thus being able to model the relative shapes of the pair
of brains. The warped image is then classified, produc-
ing an image of the CSF that is very similar to the CSF
of the late image. A subtraction of these images would
probably not show any meaningful differences. If the
segmentation and warping were perfect, then the late
CSF image would be identical to the warped early CSF
image. To localize CSF volume differences, the volume
changes resulting from the warping must also enter
into the comparison. To do this, the warped CSF is
simply multiplied by the relative volumes estimated
from the warps. This means that the procedure pre-
serves the amount of CSF from the original image,
while also achieving a good registration. The figure
shows an image of relative volumes, where lighter ar-
eas indicate a smaller volume in the early image. Fol-
lowing this multiplication, the data are smoothed. The
difference between this image and the processed late
image shows a picture of volumetric differences based
on the warps (cf. TBM). As can be seen from the bottom
row of Fig. 1, the pattern of CSF volume differences
estimated using the two methods is very similar.

VBM is a simple and pragmatic approach for char-
acterizing small-scale differences that is within the
capabilities of most research units. There are many
reasons to opt for an approach that involves a less
precise registration, but the main one concerns issues
of computational requirements. Image registration
methods that attempt to estimate an exact match be-
tween brain structures are effectively highly nonlinear
optimization algorithms with millions of parameters.
Fully optimizing a model of this order takes a very long
time and is susceptible to local minima, which, in turn,
depend upon starting estimates. The alternative,
which is what we proposed, is to use a VBM approach
with a much simpler warping method, which only at-
tempts to register the brain images “globally.”4 One of
the main disadvantages of resorting to a method that
uses a less precise image registration is that any re-

4 An exact match between any pair of brain images cannot be
obtained by a model with only 1000 or so parameters, even if [as Dr.
Bookstein suggests (Bookstein, 2001)] the basis set consists of the
average template and its changes under large-scale deformation. The
use of this “novel” basis set sounds very much like one iteration of the
spatial normalization method referred to in the AF paper (Ashburner
and Friston, 1999).
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FIG. 1. Illustration of the continuum between VBM and TBM. The center column illustrates a VBM processing stream, whereas the
column on the right illustrates a TBM-like stream.
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gional volumetric differences cannot be accurately lo-
calized.

Dr. Bookstein’s article is largely based on a misun-
derstood premise. When the AF paper (Ashburner and
Friston, 2000) refers to the continuum between VBM
and TBM, it is alluding to methods sensitive to volu-
metric differences of brain structures as described
above. It is not trying to analyze positional differences.
Much of the text and most of the mathematics in Dr.
Bookstein’s article refer to a “shift functional” which
relates to the position of cortical structures, not their
volume. His misunderstanding renders his analysis
irrelevant to arguments about VBM.

2. SYSTEMATIC REGISTRATION BIASES

Following the preprocessing, which involves spatial
normalization, tissue classification, and spatial smooth-
ing, the final step in a VBM analysis is to perform vox-
elwise statistical tests. The results of these tests are a
statistical parametric map (SPM) (Friston et al., 1995a,b)
showing significant regional differences among the pop-
ulations included in the study. Corrections for multiple
dependent comparisons are then made using the theory
of Gaussian random fields (Friston et al., 1995a,b; Wors-
ley et al., 1996).

Classical statistical tests cannot be used to prove a
hypothesis, only to reject a null hypothesis. Any signif-
icant differences that are detected could be explained
by a number of different causes, which are not disam-
biguated by the statistical inference. In other words,
these tests are not concerned with accepting a specific
hypothesis about the cause of a difference, but involve
rejecting a null hypothesis with a given certainty. Sta-
tistical tests are valid if they produce the correct error
rates (i.e., the correct number of false positives). This is
what much of the AF paper tried to ascertain. Permu-
tation tests that compared one group with another
provided no evidence that the statistical components of
SPM99 were invalid for VBM data (smoothed, seg-
mented, and spatially normalized images).5 The test
that transpired not to be valid was based on the spatial
extent of excursions. This was because the assump-
tions about stationarity of smoothness are violated, but
this could be remedied in future SPM releases using
statistical flattening (Worsley et al., 1999).

Classical statistical tests, as used by VBM, do not
protect against type II errors (false-negative results,
where real differences are not detected). Dr. Bookstein

5 As an aside, it is worth noting that no permutation tests have
been done that involve comparing single subjects against control
groups. Preliminary evidence using nonnormally distributed data of
a different type suggests that for these types of comparison, the
false-positive rates may differ from those predicted under assump-
tions of normality. Nonparametric methods (Holmes et al., 1996;
Bullmore et al., 1999) may therefore need to be used for these cases.
made several statements about VBM missing real
structural differences (Bookstein, 2001). These state-
ments are irrelevant to the discussion as they have
nothing to do with the validity of the analysis. We
accept that extra sensitivity may be achieved by more
accurate warping methods. This argument is the same
as for multisubject functional imaging studies, where
warping methods with lots of parameters can fraction-
ally increase the sensitivity to activations (Gee et al.,
1997).

When the null hypothesis has been rejected, it does
not impute a particular explanation for the difference if
there are many potential causes that could explain it.
VBM manipulates the data so that the ensuing tests
are more sensitive to some causes than others. In par-
ticular, VBM has been devised to be sensitive to sys-
tematic differences in the volumes of grey matter struc-
tures, but significant results can also arise for other
reasons, some of which are reviewed in this section.
Attribution of what may be the cause of any detected
difference generally requires a careful characterization
of the parameter estimates after the inference has been
made.

Dr. Bookstein’s main objection to VBM is that it is
sensitive to systematic shape differences attributable
to misregistration from the spatial normalization step.
This is obvious and is one of a large number of potential
systematic differences that can arise. For example, a
particular subject group may move more in the scan-
ner, so the resulting images contain motion artifact.
This motion may interact with the segmentation to
produce systematic classification differences. Another
group may have systematic differences in the relative
intensity of grey matter voxels compared to white mat-
ter or may have to be positioned differently in the
scanner. All these reasons, plus others, may produce
differences that are detectable by VBM. They are all
real differences among the data, but may not necessar-
ily be due to reductions in grey matter density.

Of course, a more accurate spatial normalization
method would mean that more of the differences can be
attributed to volumetric differences in grey matter.
However, just because a method has enough freedom to
enable it to warp anything to anything else does not
always mean that it is a method that is more suited to
accurate registration of brain images. More degrees of
freedom incur more potential local minima for any
warping method that attempts to find the single most
probable estimate of the deformations. Furthermore, it
becomes nonsensical to attempt to estimate relative
shapes of brains beyond a certain spatial scale as the
one-to-one mapping between brain regions of different
subjects breaks down. For example, many sulci are
shared between all brains, but this is not the case for
all. Generally the primary sulci, which are formed ear-
liest and tend to be quite deep, are the ones that are the
most consistently present. Later developing ones are
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much more variable. Therefore, parts of some sulci can
be objectively matched, whereas others simply cannot.

The basis function approach (Ashburner et al., 1997;
shburner and Friston, 1999) adopted by SPM99 is far

rom perfect,6 but, with the right data, it gives a good
global match between brain images. There are cases
when structural differences, not directly related to grey
matter volumes, can be identified as significant. One
obvious example is when one population has larger
ventricles. Because the spatial normalization method
(Ashburner and Friston, 1999) cannot achieve an exact
match, it must change the volume of surrounding tis-
sue when it attempts to make the ventricles of the
individual subjects the same size. For example, if the
ventricles are enlarged during spatial normalization,
then grey matter near them also needs to be enlarged.
It is then possible that structural differences pertain-
ing to ventricular volume can show up in a VBM study
of grey matter volume. A way of circumventing this
would be to base the spatial normalization on only the
segmented grey matter. If all the data entering into the
statistical analysis were only derived from grey matter,
then any significant differences must be due to grey
matter.

An analogy can be drawn with some of Bookstein’s
own work (Bookstein, 1999) on the analysis of shapes of
sections through the corpus callosum. How this section
is defined influences the resulting cross-sectional
shape, as slicing through the brain at a slightly differ-
ent angle or introducing a small out-of-plane transla-
tion will change it. Systematic differences in brain
asymmetry among subject groups will produce equally
systematic differences among the appearances of the
sections. The choice of landmarks used to define the
midsaggital section is arbitrary. If an analysis is done
with one set of landmarks, one result would be ob-
tained. If done with another, or if the landmarks are
selected by a different researcher, then another result
may arise. It can be argued that the choice of land-
marks is just as arbitrary as the method of spatial
normalization used to warp images in VBM studies.
How the registration algorithm finds homologous re-
gions is well documented, whereas the rules a human
operator uses to identify a homologous point landmark
may be more difficult to implement with 100% reliabil-
ity. Reporting that registration over intersubject vari-
ation was done with SPM99 using the default settings
is a precise description of how homologies are identi-

6 Brain-warping methods are still in their infancy. Most warping
methods involve making MAP-like estimates of deformations, mak-
ing use of suboptimal guesses for the likelihood and prior probability
distributions. A single high-dimensional MAP estimate is not that
useful when there are many other possible solutions with similar
posterior probability, and estimating expectations over all MAP es-
timates is not feasible given the high dimensionality of the param-
eter space.
fied. No one has yet defined a precise algorithm describ-
ing how an investigator manually locates landmarks
for morphometric studies.

3. VOXELWISE STATISTICS

There is a near infinite number of ways in which the
shapes of brains can differ among populations of sub-
jects. Many thousands or millions of parameters are
required to precisely describe the shape of a brain at
the resolution of a typical structural MR image. Given,
say, 10 schizophrenic and 10 control brain images,
there are lots of ways of inventing a measure that
would differentiate between the groups. In most cases
though, this measure will not provide any distinguish-
ing power in a comparison between further groups of
schizophrenics and controls. In other words, the mea-
sure would be specific to the subjects included in the
study and not generalizable to the populations as a
whole. It is therefore not feasible to use methods that
try to detect any systematic difference. One must be
specific about the types of differences that are searched
for. Focal differences are often of interest, which is why
voxelwise tests are so useful. Volumetric differences of
grey or white matter structures are of interest, which
are what VBM attempts to emphasize. The data are
smoothed spatially prior to performing the voxelwise
tests for a number of reasons. The principle reason is to
utilize the Matched Filter Theorem in order to sensi-
tize subsequent statistical tests to differences of a par-
ticular spatial scale. For example, smoothing the data
by 12 mm will make the tests more sensitive to re-
gional differences in structures of about 12-mm extent.
Furthermore, smoothing makes the tests better be-
haved and helps to compensate for inexact spatial nor-
malization.

In the section entitled “Why Not to Use Voxelwise
Statistics in Any Event,” Dr. Bookstein appears not to
approve of doing voxelwise t tests on spatially
smoothed image data (Bookstein, 2001). The reason
given is that signal in a t field extends indefinitely,
persisting until within-group variance swamps the ef-
fect. In real data, residual variance quickly attenuates
the t statistic to produce the kind of t fields that users
f methods such as SPM are now familiar with. For
his not to be the case, there must be extensive areas of
xtremely small variance in the residual field or perfect
patial correlations among the errors. As voxels falling
utside the brain are normally excluded from VBM
nalyses, this simply does not happen.
As an example (which is close to a worst-case sce-

ario), consider a simple two-sample t test involving a
omparison between two groups, each containing 1000
ubjects. The standard error of difference (sD) is 0.0447
imes the standard deviation, so a fairly typical stan-
ard deviation of 0.01 (see Fig. 2) would correspond to
s of 0.000447. The t statistic is the difference be-
D
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tween the groups divided by sD. If one assumes a very
liberal value for a of 0.05, then a voxel will be deemed
ignificant if its t value is greater than 1.6456. If sD is

0.000447, then the difference must exceed 0.000736 to
be considered significant. Using straightforward voxel-
based morphometry (without correcting for volumetric
differences that arise through spatial normalization),
the maximum possible difference between the groups is
1. A 12-mm FWHM Gaussian of amplitude 1 decays to
a value of 0.000736, at a distance of 19.4 mm from its
center. More realistic group sizes, a value, and magni-
tude of group differences should demonstrate how spe-
cious the objection to Gaussian smoothing of the data
really is.

4. SUMMARY

Dr. Bookstein’s main criticism made of VBM is that
when there are systematic anatomical differences
among populations, the method of VBM detects some of
them, but not others. In this response we have tried to
convey the sorts of differences VBM is interested in
and how it is sensitized to them.
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