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At its simplest, voxel-based morphometry (VBM) in-
volves a voxel-wise comparison of the local concentra-
tion of gray matter between two groups of subjects.
The procedure is relatively straightforward and in-
volves spatially normalizing high-resolution images
from all the subjects in the study into the same stereo-
tactic space. This is followed by segmenting the gray
matter from the spatially normalized images and
smoothing the gray-matter segments. Voxel-wise para-
metric statistical tests which compare the smoothed
gray-matter images from the two groups are per-
formed. Corrections for multiple comparisons are
made using the theory of Gaussian random fields. This
paper describes the steps involved in VBM, with par-
ticular emphasis on segmenting gray matter from MR
images with nonuniformity artifact. We provide eval-
uations of the assumptions that underpin the method,
including the accuracy of the segmentation and the
assumptions made about the statistical distribution of
the data. © 2000 Academic Press

INTRODUCTION

A number of studies have already demonstrated
structural brain differences among different patient
populations using the technique of voxel-based mor-
phometry (VBM) (Wright et al., 1995, 1999; Vargha-
Khadem et al., 1998; Shah et al., 1998; Krams et al.,
999; Abell et al., 1999; Woermann et al., 1999; Sowell
t al., 1999; May et al., 1999). This paper summarizes,
nd introduces some advances to, existing methods
nd provides evaluations of its components.
Studies of brain morphometry have been carried out

y many researchers on a number of different popula-
ions, including patients with schizophrenia, autism,
yslexia, and Turner’s syndrome. Often, the morpho-
etric measurements used in these studies have been

btained from brain regions that can be clearly defined,
esulting in a wealth of findings pertaining to these
articular measurements. These measures are typi-
ally volumes of unambiguous structures such as the
ippocampi or the ventricles. However, there are a
umber of morphometric features that may be more
805
difficult to quantify by inspection, meaning that many
structural differences may be overlooked. The impor-
tance of the VBM approach is that it is not biased to
one particular structure and gives an even-handed and
comprehensive assessment of anatomical differences
throughout the brain.

Computational Neuroanatomy

With the increasing resolution of anatomical scans of
the human brain and the sophistication of image pro-
cessing techniques there have emerged, recently, a
large number of approaches to characterizing differ-
ences in the shape and neuroanatomical configuration
of different brains. One way to classify these ap-
proaches is to broadly divide them into those that deal
with differences in brain shape and those that deal
with differences in the local composition of brain tissue
after macroscopic differences in shape have been dis-
counted. The former use the deformation fields that
map any individual brain onto some standard refer-
ence as the characterization of neuroanatomy, whereas
the latter compare images on a voxel basis after the
deformation fields have been used to spatially normal-
ize the images. In short, computational neuroanatomic
techniques can either use the deformation fields them-
selves or use these fields to normalize images that are
then entered into an analysis of regionally specific dif-
ferences. In this way, information about overall shape
(deformation fields) and residual anatomic differences
inherent in the data (normalized images) can be parti-
tioned.

Deformation-Based and Tensor-Based Morphometry

We will use deformation-based and tensor-based
morphometry in reference to methods for studying
brain shapes that are based on deformation fields ob-
tained by nonlinear registration of brain images. When
comparing groups, deformation-based morphometry
(DBM) uses deformation fields to identify differences in
the relative positions of structures within the subjects’
brains, whereas we use the term tensor-based mor-
phometry to refer to those methods that localize differ-
ences in the local shape of brain structures (see Fig. 1).
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806 ASHBURNER AND FRISTON
Characterization using DBM can be global, pertain-
ing to the entire field as a single observation, or can
proceed on a voxel-by-voxel basis to make inferences
about regionally specific positional differences. This
simple approach to the analysis of deformation fields
involves treating them as vector fields representing
absolute displacements. However, in this form, in ad-
dition to the shape information that is of interest, the
vector fields also contain information on position and
size that is likely to confound the analysis. Much of the
confounding information can be removed by global ro-
tations, translations, and a zoom of the fields in order
to analyze the Procrustes shape (Bookstein, 1997a) of
the brain.

DBM can be applied on a coarse (global) scale to
simply identify whether there is a significant differ-
ence in the global shapes (based on a small number of
parameters) among the brains of different populations.
Generally, a single multivariate test is performed us-
ing the parameters describing the deformations—usu-
ally after parameter reduction using singular value
decomposition. The Hotelling’s T2 statistic can be used
for simple comparisons between two groups of subjects
(Bookstein, 1997a, 1999), but for more complex exper-
imental designs, a multivariate analysis of covariance
can be used to identify differences via the Wilk’s l
statistic (Ashburner et al., 1998).

The alternative approach to DBM involves producing
a statistical parametric map that locates any regions of
significant positional differences among the groups of
subjects. An example of this approach involves using a

2

FIG. 1. We refer to deformation-based morphometry to describe
methods of studying the positions of structures within the brain
(left), whereas we use the term tensor-based morphometry for look-
ing at local shapes (right). Currently, the main application of tensor-
based morphometry involves using the Jacobian determinants to
examine the relative volumes of different structures. However, there
are other features of the Jacobian matrices that could be used, such
as those representing elongation and contraction in different direc-
tions. The arrows in the image on the left show absolute displace-
ments after making a global correction for rotations and transla-
tions, whereas the ellipses on the right show how the same circles
would be distorted in different parts of the brain.
voxel-wise Hotelling’s T test on the vector field de- f
cribing the displacements (Thompson and Toga, 1999;
aser et al., 1999) at each and every voxel. The signif-

cance of any observed differences can be assessed by
ssuming that the statistic field can then be approxi-
ated by a T2 random field (Cao and Worsley, 1999).

Note that this approach does not directly localize brain
regions with different shapes, but rather identifies
those brain structures that are in relatively different
positions.

In order to localize structures whose shapes differ
between groups, some form of tensor-based morphom-
etry (TBM) is required to produce statistical paramet-
ric maps of regional shape differences. A deformation
field that maps one image to another can be considered
a discrete vector field. By taking the gradients at each
element of the field, a Jacobian matrix field is obtained,
in which each element is a tensor describing the rela-
tive positions of the neighboring elements. Morphomet-
ric measures derived from this tensor field can be used
to locate regions with different shapes. The field ob-
tained by taking the determinants at each point gives
a map of the structure volumes relative to those of a
reference image (Freeborough and Fox, 1998; Gee and
Bajcsy, 1999). Statistical parametric maps of these de-
terminant fields (or possibly their logs) can then be
used to compare the anatomy of groups of subjects.
Other measures derived from the tensor fields have
also been used by other researchers, and these are
described by Thompson and Toga (1999).

Voxel-Based Morphometry

The second class of techniques, which are applied to
some scalar function of the normalized image, are re-
ferred to as voxel-based morphometry. The most prev-
alent example of this sort of approach, described in this
paper, is the simple statistical comparison of gray mat-
ter partitions following segmentation. Other variants
will be discussed later. Currently, the computational
expense of computing very high resolution deformation
fields (required for TBM at small scales) makes voxel-
based morphometry a simple and pragmatic approach
to addressing small-scale differences that is within the
capabilities of most research units.

Overview

This paper describes the steps involved in voxel-
based morphometry using the SPM99 package (avail-
ble from http://www.fil.ion.ucl.ac.uk). Following this
e provide evaluations of the assumptions that under-
in the method. This includes the accuracy of the seg-
entation and the assumptions made about the nor-
ality of the data. The paper ends with a discussion

bout the limitations of the method and some possible

uture directions.
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VOXEL-BASED MORPHOMETRY

Voxel-based morphometry of MRI data involves spa-
tially normalizing all the images to the same stereo-
tactic space, extracting the gray matter from the nor-
malized images, smoothing, and finally performing a
statistical analysis to localize, and make inferences
about, group differences. The output from the method
is a statistical parametric map showing regions where
gray matter concentration differs significantly between
groups.

Spatial Normalization

Spatial normalization involves transforming all the
subjects’ data to the same stereotactic space. This is
achieved by registering each of the images to the same
template image, by minimizing the residual sum of
squared differences between them. In our implementa-
tion, the first step in spatially normalizing each image
involves matching the image by estimating the opti-
mum 12-parameter affine transformation (Ashburner
et al., 1997). A Bayesian framework is used, whereby
the maximum a posteriori estimate of the spatial trans-
formation is made using prior knowledge of the normal
variability of brain size. The second step accounts for
global nonlinear shape differences, which are modeled
by a linear combination of smooth spatial basis func-
tions (Ashburner and Friston, 1999). The nonlinear
registration involves estimating the coefficients of the
basis functions that minimize the residual squared
difference between the image and the template, while
simultaneously maximizing the smoothness of the de-
formations.

It should be noted that this method of spatial nor-
malization does not attempt to match every cortical
feature exactly, but merely corrects for global brain
shape differences. If the spatial normalization was per-
fectly exact, then all the segmented images would ap-
pear identical and no significant differences would be
detected: VBM tries to detect differences in the re-
gional concentration of gray matter at a local scale
having discounted global shape differences.

It is important that the quality of the registration is
as high as possible and that the choice of the template
image does not bias the final solution. An ideal tem-
plate would consist of the average of a large number of
MR images that have been registered to within the
accuracy of the spatial normalization technique. The
spatially normalized images should have a relatively
high resolution (1 or 1.5 mm isotropic voxels), so that
the gray matter extraction method (described next) is
not excessively confounded by partial volume effects, in
which voxels contain a mixture of different tissue

types.
Image Partitioning with Correction
for Smooth Intensity Variations

The spatially normalized images are next parti-
tioned into gray matter (GM), white matter (WM), ce-
rebrospinal fluid (CSF), and three other background
classes, using a modified mixture model cluster analy-
sis technique. We have extended a previously described
tissue classification method (Ashburner and Friston,
1997) so that it includes a correction for image inten-
sity nonuniformity that arises for many reasons in MR
imaging. Because the tissue classification is based on
voxel intensities, the partitions derived using the older
method can be confounded by these smooth intensity
variations. Details of the improved segmentation
method are provided in the Appendix.

Preprocessing of Gray Matter Segments

The gray matter images are now smoothed by con-
volving with an isotropic Gaussian kernel. This makes
the subsequent voxel-by-voxel analysis comparable to
a region of interest approach, because each voxel in the
smoothed images contains the average concentration of
gray matter from around the voxel (where the region
around the voxel is defined by the form of the smooth-
ing kernel). This is often referred to as “gray matter
density,” but should not be confused with cell packing
density measured cytoarchitectonically. We will refer
to “concentration” to avoid confusion. By the central
limit theorem, smoothing also has the effect of render-
ing the data more normally distributed, increasing the
validity of parametric statistical tests. Whenever pos-
sible, the size of the smoothing kernel should be com-
parable to the size of the expected regional differences
between the groups of brains. The smoothing step also
helps to compensate for the inexact nature of the spa-
tial normalization.

Logit Transform

In effect, each voxel in the smoothed image segments
represents the local concentration of the tissue (be-
tween 0 and 1). Often, prior to performing statistical
tests on measures of concentration, the data are trans-
formed using the logit transformation in order to ren-
der them more normally distributed. The logit trans-
formation of a concentration p is given by

logit~p! 5
1

2
logeS p

1 2 pD .

For concentrations very close to either 1 or 0, it can
be seen that the logit transform rapidly approaches
infinite values. Because of this instability, it is advis-
able to exclude voxels from subsequent analyses that

are too close to one or the other extreme. An improved
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808 ASHBURNER AND FRISTON
model for the data can be estimated using logistic
regression (Taylor et al., 1998), but this is beyond the
scope of this paper as it requires iterative reweighted
least-squares methods. Whether the logit transform is
a necessary processing step for voxel-based morphom-
etry will be addressed later.

Statistical Analysis

Statistical analysis using the general linear model
(GLM) is used to identify regions of gray matter con-
centration that are significantly related to the partic-
ular effects under study (Friston et al., 1995b). The

LM is a flexible framework that allows many differ-
nt tests to be applied, ranging from group compari-
ons and identifying regions of gray matter concentra-
ion that are related to specified covariates such as
isease severity or age to complex interactions between
ifferent effects of interest. Standard parametric sta-
istical procedures (t tests and F tests) are used to test

the hypotheses, so they are valid providing the resid-
uals, after fitting the model, are independent and nor-
mally distributed. If the statistical model is appropri-
ate there is no reason why the residuals should not be
independent, but there are reasons why they may not
be normally distributed. The original segmented im-
ages contain values between 0 and 1, of which most of
the values are very close to either of the extremes. Only
by smoothing the segmented images does the behavior
of the residuals become more normally distributed.

Following the application of the GLM, the signifi-
cance of any differences is ascertained using the theory
of Gaussian random fields (Worsley et al., 1996; Friston
et al., 1995a). A voxel-wise statistical parametric map
(SPM) comprises the result of many statistical tests,
and it is necessary to correct for these multiple depen-
dent comparisons.

EVALUATIONS

A number of assumptions need to hold in order for
VBM to be valid. First of all, we must be measuring the
right thing. In other words, the segmentation must
correctly identify gray and white matter, and conse-
quently we have included an evaluation of the segmen-
tation method. Also, confounding effects must be elim-
inated or modeled as far as possible. For example, it is
not valid to compare two different groups if the images
were acquired on two different scanners or with differ-
ent MR sequences. In cases such as this, any group
differences may be attributable to scanner differences
rather than to the subjects themselves. Subtle but sys-
tematic differences in image contrast or noise can eas-
ily become statistically significant when a large num-
ber of subjects are entered in a study. A third issue of
validity concerns the assumptions required by the sta-

tistical tests. For parametric tests, it is important that t
the data are normally distributed. If the data are not
well behaved, then it is important to know what the
effects are on the statistical tests. If there is doubt
about the validity of the assumptions, it is better to use
a nonparametric statistical analysis (Holmes et al.,
1996).

Evaluation of Segmentation

In order to provide a qualitative example of the seg-
mentation, Fig. 2 shows a single sagittal slice through
six randomly chosen T1-weighted images. The initial
registration to the prior probability images was via an
automatically estimated 12-parameter affine transfor-
mation (Ashburner et al., 1997). The images were au-
tomatically segmented using the method described
here, and contours of extracted gray and white matter
are shown superimposed on the images.

In order to function properly, the segmentation
method requires good contrast between the different
tissue types. However, many central gray matter struc-
tures have image intensities that are almost indistin-
guishable from that of white matter, so the tissue clas-
sification is not very accurate in these regions. Another
problem is that of partial volume. Because the model
assumes that all voxels contain only one tissue type,
the voxels that contain a mixture of tissues may not be
modeled correctly. In particular, those voxels at the
interface between white matter and ventricles will of-
ten appear as gray matter. This can be seen to a small
extent in Figs. 2 and 3.

A Comparison of the Segmentation—With and
without Nonuniform Sensitivity Correction

Segmentation was evaluated using a number of sim-
ulated images (181 3 217 3 181 voxels of 1 3 1 3 1
mm) of the same brain generated by the BrainWeb
simulator (Cocosco et al., 1997; Kwan et al., 1996; Col-
ins et al., 1998) with 3% noise (relative to the brightest
issue in the images). The contrasts of the images sim-
lated T1-weighted, T2-weighted, and proton density
PD) images (all with 1.5-T field strength), and they
ere segmented individually and in a multispectral
anner.1 The T1-weighted image was simulated as a

spoiled FLASH sequence, with a 30° flip angle, 18-ms
repeat time, 10-ms echo time. The T2 and PD images
were simulated by a dual echo spin echo technique,
with 90° flip angle, 3300-ms repeat time, and echo
times of 35 and 120 ms. Three different levels of image
nonuniformity were used: 0%RF—which assumes that
there is no intensity variation artifact, 40%RF—which
assumes a fairly typical amount of nonuniformity, and
100%RF—which is more nonuniformity than would

1 Note that different modulation fields that account for nonunifor-
ity (see Appendix) were assumed for each image of the multispec-
ral data sets.
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normally be expected. The simulated images were seg-
mented, both with and without sensitivity correction
(see Appendix for further details). Three partitions
were considered in the evaluation: gray matter, white
matter, and other (not gray or white), and each voxel
was assigned to the most likely partition. Because the
data from which the simulated images were derived
were available, it was possible to compare the seg-
mented images with images of “true” gray and white
matter using the k statistic (a measure of interrater
greement),

k 5
p0 2 pe

1 2 pe
,

where p0 is the observed proportion of agreement and
pe is the expected proportion of agreements by chance.
If there are N observations in K categories, the ob-
served proportional agreement is

p0 5 O
k51

K

fkk/N,

where fkk is the number of agreements for the kth
ategory. The expected proportion of agreements is
iven by

pe 5 OK rkck/N 2,

FIG. 2. A single sagittal slice through six T1-weighted images (
time, 4 ms echo time, and 0.6 ms inversion time). Contours of extra
k51
where rk and ck are the total number of voxels in the
kth class for both the “true” and the estimated parti-
tions.

The classification of a single plane of the simulated
T1-weighted BrainWeb image with the nonuniformity
is illustrated in Fig. 3. It should be noted that no
preprocessing to remove scalp or other nonbrain tissue
was performed on the image. In theory, the segmenta-
tion method should produce slightly better results of
this nonbrain tissue is excluded from the computa-
tions. As the algorithm stands, a small amount of non-
brain tissue remains in the gray matter segment,
which has arisen from voxels that lie close to gray
matter and have similar intensities.

The resulting k statistics from segmenting the dif-
ferent simulated images are shown in Table 1. These
results show that the nonuniformity correction made
little difference to the tissue classification of the im-
ages without any nonuniformity artifact. For images
containing nonuniformity artifact, the segmentations
using the correction were of about the same quality as
the segmentations without the artifact and very much
better than the segmentations without the correction.

A by-product of the segmentation is the estimation of
an intensity nonuniformity field. Figure 4 shows a com-
parison of the intensity nonuniformity present in a
simulated T1 image with 100% nonuniformity (created
by dividing noiseless simulated images with 100% non-
uniformity and no nonuniformity) with that recovered

scanner, with an MPRAGE sequence, 12° tip angle, 9.7 ms repeat
d gray and white matter are shown superimposed on the images.
2-T
by the segmentation method. A scatterplot of “true”
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versus recovered nonuniformity shows a straight line,
suggesting that the accuracy of the estimated nonuni-
formity is very good.

Stability with Respect to Misregistration
with the a Priori Images

In order for the Bayesian segmentation to work prop-
erly, the image volume must be in register with a set
of a priori probability images used to instate the pri-

FIG. 3. The classification of the simulated BrainWeb image. The
nonuniformity and the nonuniformity corrected version. From left t
matter used for the segmentation, gray matter segmented without
correction, and the “true” distribution of gray matter (from which th
middle, except that it shows white matter rather than gray. Withou
white matter in posterior areas to be classified as gray. This was als
the inferior–superior direction.

TAB

Single image

T1 T2 PD

0%RF—uncorrected 0.95 0.90 0.90
0%RF—corrected 0.95 0.90 0.90
40%RF—uncorrected 0.92 0.88 0.79
40%RF—corrected 0.95 0.90 0.90
100%RF—uncorrected 0.85 0.85 0.67
100%RF—corrected 0.94 0.90 0.88
Note. The different k statistics that were computed after segmenting
ors. Here we examine the effects of misregistration on
the accuracy of the segmentation, by artificially trans-
lating (in the left–right direction) the prior probability
images by different distances prior to segmenting the
whole simulated volume. The 1-mm slice thickness,
40% nonuniformity, and 3% noise simulated T1-
weighted image (described above) was used for the
segmentation, which included the nonuniformity cor-
rection. The k statistic was computed with respect to

row shows the original simulated T1-weighted MR image with 100%
ight, the middle row shows the a priori spatial distribution of gray
uniformity correction, gray matter segmented with nonuniformity
imulated images were derived). The bottom row is the same as the
onuniformity correction, the intensity variation causes some of the
ery apparent in the cerebellum because of the intensity variation in

1

Multispectral

T2/PD T1/T2 T1/PD T1/T2/PD

0.93 0.94 0.96 0.94
0.93 0.94 0.96 0.95
0.90 0.93 0.95 0.94
0.93 0.94 0.96 0.94
0.87 0.92 0.94 0.93
0.92 0.93 0.95 0.94
top
o r
non
e s
t n
o v
LE
the simulated images are shown.
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811VOXEL-BASED MORPHOMETRY
the true gray and white matter for the different trans-
lations, and the results are plotted in Fig. 5.

In addition to illustrating the effect of misregistra-
tion, this also gives an indication of how far a brain can
deviate from the normal population of brains (that

FIG. 4. Top left: The true intensity nonuniformity field of the
segmentation algorithm. Bottom left: The recovered divided by th
nonuniformity versus recovered nonuniformity, derived from voxels
Note that the plot is a straight line, but that its gradient is not bec

FIG. 5. Segmentation accuracy with respect to misregistration

twith the a priori images.
constitute the prior probability images) in order for it
to be segmented adequately. Clearly, if the brain can-
not be adequately registered with the probability im-
ages, then the segmentation will not be as accurate.
This also has implications for severely abnormal
brains, as these are more difficult to register with the
images that represent the prior probabilities of voxels
belonging to different classes. Segmenting these abnor-
mal brains can be a problem for the algorithm, as the
prior probability images are based on normal healthy
brains. Clearly the profile in Fig. 5 depends on the
smoothness or resolution of the a priori images. By not
smoothing the a priori images, the segmentation would
e optimal for normal, young, and healthy brains.
owever, the prior probability images may need to be

moother in order to encompass more variability when
atient data are to be analyzed.

Evaluation of the Assumptions about Normally
Distributed Data

The statistics used to identify structural differences
ake the assumption that the residuals after fitting

ulated T1 image. Top right: The nonuniformity recovered by the
true nonuniformity. Bottom right: A scatterplot of true intensity
oughout the whole volume classified as either white or gray matter.
e it is not possible to recover the absolute scaling of the field.
sim
e

thr
he model are normally distributed. Statistics cannot
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812 ASHBURNER AND FRISTON
prove that data are normally distributed—it can only
be used to disprove the hypothesis that they are nor-
mal. For normally distributed data, a Q-Q plot of the
data should be a straight line. A significant deviation
from a straight line can be identified by computing the
correlation coefficient of the plot as described by John-
son and Wichern (1998).

A Q-Q plot is a plot of the sample quantile versus the
sample quantile that would be expected if the residuals
were normally distributed. Computing the sample
quantile involves first sorting the J residuals (after

ividing by the square root of the diagonal elements of
he residual forming matrix) into increasing order (x1,

x2, . . . , xJ). The inverse cumulative distribution of each
of the J elements is then computed as

qj 5 Î2 erfinvS2
j 2 3

8

J 1 1
4

2 1D ,

here erfinv is the inverse error function. A Q-Q plot
s simply a plot of q versus x and should be a straight
ine if the data in x are normally distributed. To test
ormality, the correlation coefficient for the Q-Q plot is
sed to test for any significant deviation from a
traight line. A lookup table is used to reject the null
ypothesis if the correlation coefficient falls below a
articular value, given a certain sample size. However,
n this paper we simply use the correlation coefficient
s a “normality statistic” and examine its distribution
ver voxels.
The data used to test the assumptions were T1-
eighted MRI scans of 50 normal male right-handed

FIG. 6. Histograms of correlation coefficients taken over the wh
intensity over all images was greater than 0.05). The dotted lines
normally distributed. The solid lines show the histograms of the data
obtained using the logit transformed data. The plot on the left is bas
whereas that on the right does model this confounding effect.
ubjects ages between 17 and 62 (median 26, mean 29),
whose structural scans had been acquired as part of an
ongoing program of functional imaging research. The
scans were performed on a Siemens Magnetom Vision
scanner operating at 2 T. An MPRAGE sequence was
used with a 12° tip angle, 9.7-ms repeat time, 4-ms
echo time, and 0.6-ms inversion time, to generate sag-
ittal images of the whole brain with voxel sizes of 1 3
1 3 1.5 mm. The images were spatially normalized,
segmented, and smoothed using a Gaussian kernel of
12 mm full width at half-maximum (FWHM).

Voxel-by-voxel correlation coefficients of the Q-Q
plots were computed over all voxels of the data for
which the mean intensity over all images was greater
than 0.05. Voxels of low mean intensity were excluded
from the computations, because they would not be in-
cluded in the VBM analysis. This is because we know
that these low-intensity voxels are most likely to devi-
ate most strongly from the assumptions about normal-
ity. Q-Q plots were computed using two different linear
models. The first model involved looking at the resid-
uals after fitting the mean, whereas the second was
more complex, in that it also modeled the confounding
effect of the total amount of gray matter in each vol-
ume. Q-Q plots were computed both with and without
the logit transform. Histograms of the correlation co-
efficients were computed over the whole-image vol-
umes (717,191 voxels), along with histograms gener-
ated from simulated Gaussian noise. These are plotted
in Fig. 6 and show that the data do deviate slightly
from normally distributed. The logit transform ap-
peared to make the residuals slightly more normally
distributed. The normality of the residuals was also
improved by modeling the total amount of gray matter

image volumes (using a total of 717,191 voxels for which the mean
the histograms that would be expected if the data were perfectly

thout the logit transform, and the dashed lines show the histograms
n the model that does not include global gray matter as a confound,
ole-
are
wi

ed o
as a confounding effect.
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813VOXEL-BASED MORPHOMETRY
Testing the Rate of False Positives Using Randomization

The previous section showed that the data are not
quite normally distributed, but it does not show how
the nonnormality influences any subsequent statistics.

Ultimately, we wish to protect against false-positive
results, and in this part of the paper, we test how
frequently they arise. The statistics were evaluated
using the same preprocessed structural brain images of
50 subjects as were used in the previous section. The
subjects were randomly assigned, with replacement, to
two groups of 12 and 38, and statistical tests performed
using SPM99b (Wellcome Department of Cognitive
Neurology, London, UK) to compare the groups. The
numbers in the groups were chosen as many studies
typically involve comparing about a dozen patients
with a larger group of control subjects. This was re-
peated a total of 50 times, looking for both significant
increases and decreases in the gray matter concentra-
tion of the smaller group. The end result is a series of
100 parametric maps of the t statistic. Within each of
hese SPMs, the local maxima of the t statistic field
ere corrected for the number of dependent tests per-

ormed, and a P value was assigned to each (Friston et
l., 1995a). Using a corrected threshold of P 5 0.05, we
ould expect about five local maxima with P values
elow this threshold by chance alone. Over the 100
PMs, there were six local maxima with corrected P
alues below 0.05. The same 50 subjects were ran-
omly assigned to either of the two groups and the
tatistics performed a further 50 times, but this time
odeling the total amount of gray matter as a con-

ounding effect. The results of this analysis produced
our significant local maxima with corrected P values
elow 0.05. These results suggest that the inference
rocedures employed are robust to the mild deviations
rom normality incurred by using smooth image parti-
ions.

Another test available within SPM is based on the
umber of connected voxels in a cluster defined by a
respecified threshold (extent statistic). In order to be
alid, this test requires the smoothness of the residuals
o be spatially invariant, but this is known not to be the
ase by virtue of the highly nonstationary nature of the
nderlying neuroanatomy. As noted by Worsley et al.

1999), this nonstationary smoothness leads to inexact
values.

The reason is simply this: by chance alone, large size clusters
will occur in regions where the images are very smooth, and
small size clusters will occur in regions where the image is very
rough. The distribution of cluster sizes will therefore be con-
siderably biased towards more extreme cluster sizes, resulting
in more false positive clusters in smooth regions. Moreover,
true positive clusters in rough regions could be overlooked
because their sizes are not large enough to exceed the critical
size for the whole region.

Corrected probability values were assigned to each

cluster based on the number of connected voxels ex-
ceeding a t value of 3.27 (spatial extent test). Approx-
imately 5 significant clusters would be expected from
the 100 SPMs if the smoothness was stationary. Eigh-
teen significant clusters were found when the total
amount of gray matter was not modeled as a confound,
and 14 significant clusters were obtained when it was.
These tests confirmed that the voxel-based extent sta-
tistic should not be used in VBM.

Under the null hypothesis, repeatedly computed t
statistics should assume the probability density func-
tion of the Student t distribution. This was verified

sing the computed t fields, of which each t field con-
tains 717,191 voxels. Plots of the resulting histograms
are shown in Fig. 7. The top row presents distributions
when global differences in gray matter were not re-
moved as a confound. Note that global variance biases
the distributions of t values from any particular com-
parison.

Further experiments were performed to test whether
false positives occurred evenly throughout the brain or
were more specific to particular regions. The tests were
done on a single slice through the same 50 subjects’
preprocessed brain images, but used the total count of
gray matter in the brains as a confound. Each subject
was randomly assigned to two groups of 12 and 38,
pixel-by-pixel two-tailed t tests were done, and loca-
tions of t scores higher than 3.2729 or lower than
23.2729 were recorded (corresponding to an uncor-
rected probability of 0.002). This procedure was re-
peated 10,000 times, and Fig. 8 shows an image of the
number of false positives occurring at each of the
10,693 pixels. Visually, the false positives appear to be
uniformly distributed. According to the theory, the
number of false positives occurring at each pixel should
be 20 (10,000 3 0.002). An average of 20.171 false
positives was found, showing that the validity of sta-
tistical tests based on uncorrected t statistics is not
severely compromised.

DISCUSSION

Possible Improvements to the Segmentation

One of the analytic components described in this
paper is an improved method of segmentation that is
able to correct for image nonuniformity that is smooth
in all three dimensions. The method has been found to
be robust and accurate for high-quality T1-weighted
images, but is not beyond improvement. Currently,
each voxel is assigned a probability of belonging to a
particular tissue class based only on its intensity and
information from the prior probability images. There is
a great deal of other information that could be incor-
porated into the classification. For example, we know
that if all a voxel’s neighbors are gray matter, then
there is a high probability that it should also be gray

matter. Other researchers have successfully used
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Markow random field models to include this informa-
tion in the tissue classification model (Vandermeulen
et al., 1996; Van Leemput et al., 1999b). A very simple
prior, that can be incorporated, is the relative intensity
of the different tissue types. For example, if we are
segmenting a T1-weighted image, we know that the
white matter should have a higher intensity than the
gray matter, which in turn should be more intense
than that of the CSF. When computing the means for

FIG. 7. Histograms of t scores from randomly generated tests. To
a mean effect as a confound (47 degrees of freedom). Left: 50 histog

he mean (i.e., cumulative distribution over all voxels and volumes) o
unction of the Student t distribution for 47/48 degrees of freedom is
logarithmic scale.

FIG. 8. Left: Mean of 50 subjects’ preprocessed brain images. Rig

0.002 level, after 10,000 randomizations.
each cluster, this prior information could sensibly be
used to bias the estimates.

The Effect of Spatial Normalization

Because of the nonlinear spatial normalization, the
volumes of certain brain regions will grow, whereas
others will shrink. This has implications for the inter-
pretation of what VBM is actually testing for. The

ot modeling mean effect (48 degrees of freedom). Bottom: Modeling
s of t scores testing randomly generated effects of interest. Center:
e 50 histograms is plotted as a solid line, and the probability density
wn by the dotted line. Right: The same as center, except plotted on

Number of false positives occurring at each voxel at the uncorrected
p: N
ram
f th
sho
ht:
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objective of VBM is to identify regional differences in
the concentration of a particular tissue (gray or white
matter). In order to preserve the actual amounts of
gray matter within each structure, a further process-
ing step that multiplies the partitioned images by the
relative voxel volumes can be incorporated. These rel-
ative volumes are simply the Jacobian determinants of
the deformation field. This augmented VBM can there-
fore be considered a combination of VBM and TBM, in
which the TBM employs the testing of the Jacobian
determinants. VBM can be thought of as comparing the
relative concentration of gray matter (i.e., the propor-
tion of gray matter to other tissue types within a re-
gion). With the adjustment for volume change, VBM
would be comparing the absolute amounts of gray mat-
ter in the different regions. As mentioned under “Spa-
tial Normalization,” if the spatial normalization was
perfect, then no gray matter differences would be ob-
served if a volume change adjustment was not applied.
In this instance, all the information would be in the
deformation fields and would be tested using TBM.
However, if the spatial normalization is only removing
global differences in brain shape, the results of VBM
show relative gray matter concentration differences.
As faster and more precise registration methods
emerge, then a TBM volume change adjustment may
become more important. It is envisaged that, by incor-
porating this correction, a continuum will arise with
simple VBM (with low-resolution spatial normaliza-
tion) at one end of the methodology spectrum and sta-
tistical tests based on Jacobian determinants at the
other (with high-resolution spatial normalization).

Another perspective on what VBM is actually com-
paring can be obtained by considering how a similar
analysis would be done using volumes of interest
(VOI). To simplify the analogy, consider that the
smoothing kernel is the shape of a sphere (values of 1
inside and 0 outside) rather than a 3D Gaussian point
spread function. After an image is convolved with this
kernel, each voxel in the smoothed image will contain a
count of the gray matter voxels from the surrounding
spherical VOI. Now consider the effects of the spatial
normalization and where the voxels within each VOI
come from in the original gray matter images. The
spheres can be thought of as being projected onto the
original anatomy, but in doing so, their shapes and
sizes will be distorted. Without multiplying by the rel-
ative voxel sizes, what would be measured would be the
proportion of gray matter within each projected VOI
(relative to other tissue types). With the multiplication,
the total amount of gray matter within the VOI is being
measured.

Multivariate Voxel-Based Morphometry

Ideally, a procedure like VBM should be able to

utomatically identify any structural abnormalities in
a single brain image. However, even with many hun-
dreds of subjects in a database of controls, as it stands,
the method may not be powerful enough to detect sub-
tle abnormalities in individuals. A possibly more pow-
erful procedure would be to use some form of voxel-wise
multivariate approach. Within a multivariate frame-
work, in addition to images of gray matter concentra-
tion, other image features would be included. The first
obvious feature to be included would be white matter
concentration. Other features could include local indi-
ces of gyrification such as the curvature of the gray
matter segment, image gradients, and possibly infor-
mation from the spatial normalization procedure. With
a larger database of controls, more image features can
be included without seriously impacting on the degrees
of freedom of the model. The Hotelling’s T2 test could
be used to perform simple comparisons between two
groups. However, for more complex models, the more
general multivariate analysis of covariance would be
necessary. By doing this, VBM and tensor-based mor-
phometric techniques can be combined in order to pro-
vide a more powerful method of localizing regional
abnormalities.

CONCLUSIONS

This paper has considered the various components of
voxel-based morphometry. We have described and
evaluated an improved method of MR image segmen-
tation, showing that the modifications do improve the
segmentation of images with intensity nonuniformity
artifact. In addition, we tested some of the assumptions
necessary for the parametric statistical tests used by
SPM99 to implement VBM. We demonstrated that the
data used for these analyses are not exactly normally
distributed. However, no evidence was found to sup-
pose that (with 12-mm FWHM smoothed data) uncor-
rected statistical tests or corrected statistical infer-
ences based on peak height are invalid. We found that
the statistic based on cluster spatial extent is not valid
for VBM analysis, suggesting a violation of the station-
ariness assumptions upon which this test is based.
Until the spatial extent test has been modified to ac-
commodate nonstationary smoothness, then VBM
should not use cluster size to assess significance (the
peak height test has already been modified).

APPENDIX

The Tissue Classification Method

Although we actually use a three-dimensional imple-
mentation of the tissue classification method, which
can also be applied to multispectral images, we will
simplify the explanation of the algorithm by describing
its application to a single two-dimensional image.

The tissue classification model makes a number of

assumptions. The first is that each of the I 3 J voxels



a
s
G
i
v

i
u
f
b
t

m
q
m

816 ASHBURNER AND FRISTON
of the image (F) has been drawn from a known number
(K) of distinct tissue classes (clusters). The distribution
of the voxel intensities within each class is normal (or
multinormal for multispectral images) and initially un-
known. The distribution of voxel intensities within
cluster k is described by the number of voxels within
the cluster (hk), the mean for that cluster (vk), and the
variance around that mean (ck). Because the images
re spatially normalized to a particular stereotactic
pace, prior probabilities of the voxels belonging to the
M, the WM, and the CSF classes are known. This

nformation is in the form of probability images—pro-
ided by the Montréal Neurological Institute (Evans et

al., 1992, 1993, 1994)—which have been derived from
the MR images of 152 subjects (66 female and 86 male;
129 right handed, 14 left handed, and 9 unknown
handedness; ages between 18 and 44, with a mean age
of 25 and median age of 24). The images were originally
segmented using a neural network approach, and mis-
classified nonbrain tissue was removed by a masking
procedure. To increase the stability of the segmenta-
tion with respect to small registration errors, the im-
ages are convolved with an 8-mm full width at half-
maximum Gaussian smoothing kernel. The prior
probability of voxel fij belonging to cluster k is denoted
by bijk. The final assumption is that the intensity of the
mage has been modulated by multiplication with an
nknown scalar field. Most of the algorithm for classi-

ying the voxels has been described elsewhere (Ash-
urner and Friston, 1997), so this paper will emphasize
he modification for correcting the modulation field.

There are many unknown parameters in the seg-
entation algorithm, and estimating any of these re-

uires knowledge about the other parameters. Esti-
ating the parameters that describe a cluster (hk, vk,

and ck) relies on knowing which voxels belong to the
cluster and also the form of the intensity modulating
function. Estimating which voxels should be assigned
to each cluster requires the cluster parameters to be
defined and also the modulation field. In turn, estimat-
ing the modulation field needs the cluster parameters
and the belonging probabilities.

The problem requires an iterative algorithm (see Fig.
9). It begins with assigning starting estimates for the
various parameters. The starting estimate for the mod-
ulation field is typically uniformly 1. Starting esti-
mates for the belonging probabilities of the GM, WM,
and CSF partitions are based on the prior probability
images. Since we have no probability maps for back-
ground and nonbrain tissue clusters, we estimate them
by subtracting the prior probabilities for GM, WM, and
CSF from a map of all 1’s and divide the result equally
between the remaining clusters.2

2 Where identical prior probability maps are used for more than

one cluster, the affected cluster parameters need to be modified
Each iteration of the algorithm involves estimating
the cluster parameters from the nonuniformity cor-
rected image, assigning belonging probabilities based
on the cluster parameters, checking for convergence,
and reestimating and applying the modulation func-
tion. This continues until a convergence criterion is
satisfied. The final values for the belonging probabili-
ties are in the range of 0 to 1, although most values
tend to stabilize very close to one of the two extremes.
The individual steps involved in each iteration will now
be described in more detail.

Estimating the Cluster Parameters

This stage requires the original image to be intensity
corrected according to the most recent estimate of the
modulation function. Each voxel of the intensity-cor-
rected image is denoted by gij. We also have the current
estimate of the belonging probabilities for each voxel
with respect to each cluster. The probability of voxel i,
j belonging to class k is denoted by pijk.

The first step is to compute the number of voxels
belonging to each of the K clusters (h) as

hk 5 O
i51

I O
j51

J

pijk over k 5 1..K.

Mean voxel intensities for each cluster (v) are com-
puted. This step effectively produces a weighted mean
of the image voxels, where the weights are the current
belonging probability estimates:

slightly. This is typically done after the first iteration, by assigning
different values for the means uniformly spaced between 0 and the

FIG. 9. A flow diagram for the tissue classification.
intensity of the white matter cluster.
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vk 5
¥ i51

I ¥ j51
J pij kgij

hk
over k 5 1..K.

Then the variance of each cluster (c) is computed in
way similar to the mean:

ck 5
¥ i51

I ¥ j51
J pijk~gij 2 vk!

2

hk
over k 5 1..K.

Assigning Belonging Probabilities

The next step is to recalculate the belonging proba-
ilities. It uses the cluster parameters computed in the
revious step, along with the prior probability images
nd the intensity modulated input image. Bayes’ rule
s used to assign the probability of each voxel belonging
o each cluster,

pijk 5
rij kqij k

¥ l51
K rij lqij l

over i 5 1..I, j 5 1..J, and k 5 1..K,

here pijk is the a posteriori probability that voxel i, j
belongs to cluster k given its intensity of gij; rijk is the
ikelihood of a voxel in cluster k having an intensity of
ik; and qijk is the a priori probability of voxel i, j

belonging in cluster k.
The likelihood function is obtained by evaluating the

probability density functions for the clusters at each of
the voxels:

rijk 5 ~2pck!
21/2expS2~gij 2 vk!

2

2ck
D

over i 5 1..I, j 5 1..J, and k 5 1..K.

The prior (qijk) is based on two factors: the number of
voxels currently belonging to each cluster (hk) and the
prior probability images derived from a number of im-
ages (bijk). With no knowledge of the a priori spatial

istribution of the clusters or the intensity of a voxel,
hen the a priori probability of any voxel belonging to a
articular cluster is proportional to the number of vox-
ls currently included in that cluster. However, with
he additional data from the prior probability images,
e can obtain a better estimate of the priors:

qijk 5
hkbij k

¥ l51
I ¥m51

J blmk

over i 5 1..I, j 5 1..J, and k 5 1..K.

Convergence is ascertained by following the log-like-

ihood function:
O
i51

I O
j51

J

log~ O
k51

K

rij kqij k!.

The algorithm is terminated when the change in log-
likelihood from the previous iteration becomes negligi-
ble.

Estimating and Applying the Modulation Function

Many groups have developed methods for correcting
intensity nonuniformities in MR images, and the
scheme we describe here shares common features.
There are two basic models describing the noise prop-
erties of the images: multiplicative noise and additive
noise. The multiplicative model describes images that
have noise added before being modulated by the non-
uniformity field (i.e., the standard deviation of the
noise is multiplied by the modulating field), whereas
the additive version models noise that is added after
the modulation (standard deviation is constant). We
have used a multiplicative noise model, which assumes
that the errors originate from tissue variability rather
than additive Gaussian noise from the scanner. Figure
10 illustrates the model used by the classification.

Nonuniformity correction methods all involve esti-
mating a smooth function that modulates the image
intensities. If the function is not forced to be smooth,
then it will begin to fit the higher frequency intensity
variations due to different tissue types, rather than the
low-frequency intensity nonuniformity artifact. Thin-
plate spline (Sled et al., 1998) and polynomial (Van
Leemput et al., 1999a, b) basis functions are widely
used for modeling the intensity variation. In these
models, the higher frequency intensity variations are
restricted by limiting the number of basis functions. In
the current model, we assume that the modulation
field (U) has been drawn from a population for which
we know the a priori distribution. The distribution is
assumed to be multinormal, with a mean that is uni-
formly 1 and a covariance matrix that models smoothly
varying functions. In this way, a Bayesian scheme is
used to penalize high-frequency intensity variations by
introducing a cost function based on the “energy” of the
modulating function. There are many possible forms
for this energy function. Some widely used simple cost
functions include the “membrane energy” and the
“bending energy” (1997b), which (in three dimensions)
have the forms h 5 ¥i ¥j51

3 l ((­u(xi))/­xji)
2 and h 5 ¥i

¥j51
3 ¥k51

3 l((­2u(xi))/­xji­xki)
2, respectively. In these for-

mulae, ­u(xi)/­xji is the gradient of the modulating
function at the ith voxel in the jth orthogonal direction
and l is a user-assigned constant. However, for the
purpose of modulating the images, we use a smoother
cost function that is based on the squares of the third

derivatives:
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h 5 O
i
O
j51

3 O
k51

3 O
l51

3

lS ­ 3u~xi!

­xji­xki­xli
D 2

.

This model was chosen because it produces slowly
varying modulation fields that can represent the vari-
ety of nonuniformity effects that we expect to encoun-
ter in MR images (see Fig. 11).

To reduce the number of parameters describing the
field, it is modeled by a linear combination of low-
frequency discrete cosine transform basis functions
(chosen because there are no boundary constraints). A
two (or three)-dimensional discrete cosine transform
(DCT) is performed as a series of one-dimensional
transforms, which are simply multiplications with the
DCT matrix. The elements of a matrix (D) for comput-
ng the first M coefficients of the DCT of a vector of

FIG. 10. The MR images are modeled as a number of distinct clu
ach cluster (top right). The intensity modulation is assumed to b
ultiplication of the modulation field with the image (bottom right)
ength I are given by
di1 5
1

ÎI
, i 5 1..I,

dim 5 Î2

I
cosSp~2i 2 1!~m 2 1!

2I D , i 5 1..I, m 5 2..M.

(1)

The matrix notation for computing the first M 3 M
oefficients of the two-dimensional DCT of a modula-
ion field U is X 5 D1

TUD2, where the dimensions of the
DCT matrices D1 and D2 are I 3 M and J 3 M,
espectively, and U is an I 3 J matrix. The approxi-
ate inverse DCT is computed by U . D1XD2

T. An
alternative representation of the two-dimensional DCT
obtains by reshaping the I 3 J matrix U so that it is a
vector (u). Element i 1 ( j 2 1) 3 I of the vector is then

rs (top left), with different levels of Gaussian random noise added to
moothly varying (bottom left) and is applied as a straightforward
ste
e s
.

equal to element i, j of the matrix. The two-dimensional
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DCT can then be represented by x 5 DTu, where D 5
D2 V D1 (the Kronecker tensor product of D2 and D1)
and u . Dx.

The sensitivity correction field is computed by esti-
ating the coefficients (x) of the basis functions that
inimize a weighted sum of squared differences be-

ween the data and the model and also the bending
nergy of the modulation field. This can be expressed
sing matrix terminology as a regularized weighted

east-squares fitting,

x 5 ~A 1
TA1 1 A 2

TA2· · · 1 C 0
21! 21

3 ~A 1
Tb1 1 A 2

Tb2· · · 1 C 0
21x0!,

where x0 and C0 are the means and covariance matri-
ces describing the a priori distribution of the coeffi-
cients. Matrix Ak and column vector bk are constructed
or cluster k from

Ak 5 diag~pkc k
21/2!diag~f!D and bk 5 pkc k

21/2vk,

where pk refers to the belonging probabilities for the
kth cluster considered as a column vector. The objec-
tive is to find the smooth modulating function (de-
scribed by its DCT coefficients) that will bring the voxel
intensities of each cluster as close as possible (in the
least-squares sense) to the cluster means, in which the

21/2

FIG. 11. Randomly generated modulation fields using the membr
and the squares of the third derivatives (right).
vectors pkck are voxel-by-voxel weighting functions.
Computing Ak
TAk and Ak

Tbk could be potentially very
time consuming, especially when applied in three di-
mensions. However, this operation can be greatly
speeded up using the properties of Kronecker tensor
products (Ashburner and Friston, 1999). Figure 12
shows how this can be done in two dimensions using
Matlab as a form of pseudo-code.

energy cost function (left), the bending energy cost function (center),

FIG. 12. The algorithm for computing Ak
TAk (alpha_k) and Ak

Tbk

(beta_k) in two dimensions using Matlab as a pseudo-code. The
symbol “*” refers to matrix multiplication, whereas “.*” refers to
element-by-element multiplication. “ ’ ” refers to a matrix transpose
and “∧” to a power. The jth row of matrix “D2” is denoted by “D2( j, :)”,
and the jth column of matrix “img2” is denoted by “img2(:, j)”. The
functions “zeros(a, b)” and “ones(a, b)” would produce matrices of size
a 3 b of either all 0 or all 1. A Kronecker tensor product of two
matrices is represented by the “kron” function. Matrix “F” is the I 3
J nonuniformity corrected image. Matrix “P_k” is the I 3 J current
estimate of the probabilities of the voxels belonging to cluster k.
Matrices “D1” and “D2” contain the DCT basis functions and have
dimensions I 3 M and J 3 N. “v_k” and “c_k” are scalers and refer to
ane
the mean and variance of the kth cluster.
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The prior distribution of the coefficients is based on
the cost function described above. For coefficients x
this cost function is computed from xTC0

21x, where (in
two dimensions),

C0
21 5 l~D-2

TD-2! # ~D 1
TD1! 1 3l~D02

TD 02! # ~D9 1
TD91!

1 3l~D92
TD92 # ~D0 1

TD91! 1 l~D 2
TD2! # ~-1

TD-1!,

where the notations D*1, D(1, and D-1 refer to the first,
second, and third derivatives (by differentiating Eq. (1)
with respect to i) of D1, and l is a regularization con-
tant. The mean of the a priori distribution of the DCT
oefficients is such that it would generate a field that is
niformly 1. For this, all the elements of the mean
ector are set to 0, apart from the first element that is
et to =MN.
Finally, once the coefficients have been estimated,

then the modulation field u can be computed from the
stimated coefficients (x) and the basis functions (D1

and D2):

uij 5 O
n51

N O
m51

M

d2jnxmnd1im over i 5 1..I and j 5 1..J.

he new estimates for the sensitivity-corrected images
re then obtained by a simple element-by-element mul-
iplication with the modulation field:

gij 5 fijuij over i 5 1..I and j 5 1..J.
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