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This paper is about detecting activations in statisti-
cal parametric maps and considers the relative sensi-
tivity of a nested hierarchy of tests that we have
framed in terms of the level of inference (voxel level,
cluster level, and set level). These tests are based on
the probability of obtaining c, or more, clusters with k,
or more, voxels, above a threshold u. This probability
has a reasonably simple form and is derived using
distributional approximations from the theory of
Gaussian fields. The most important contribution of
this work is the notion of set-level inference. Set-level
inference refers to the statistical inference that the
number of clusters comprising an observed activation
profile is highly unlikely to have occurred by chance.
This inference pertains to the set of activations reach-
ing criteria and represents a new way of assigning P
values to distributed effects. Cluster-level inferences
are a special case of set-level inferences, which obtain
when the number of clusters c 5 1. Similarly voxel-
level inferences are special cases of cluster-level infer-
ences that result when the cluster can be very small
(i.e., k 5 0). Using a theoretical power analysis of dis-
tributed activations, we observed that set-level infer-
ences are generally more powerful than cluster-level
inferences and that cluster-level inferences are gener-
ally more powerful than voxel-level inferences. The
price paid for this increased sensitivity is reduced
localizing power: Voxel-level tests permit individual
voxels to be identified as significant, whereas cluster-
and set-level inferences only allow clusters or sets of
clusters to be so identified. For all levels of inference
the spatial size of the underlying signal f (relative to
resolution) determines the most powerful thresholds
to adopt. For set-level inferences if f is large (e.g., fMRI)
then the optimum extent threshold should be greater
than the expected number of voxels for each cluster. If
f is small (e.g., PET) the extent threshold should be
small. We envisage that set-level inferences will find a
role in making statistical inferences about distributed
activations, particularly in fMRI. r 1996 Academic Press, Inc.

INTRODUCTION

This paper concerns statistical inference about activa-
tion profiles in functional neuroimaging, particularly
functional magnetic resonance imaging (fMRI). We
present a taxonomy of tests that pertain to different
levels of inference for an activation profile, namely, a
voxel, a cluster of voxels, and a set of clusters. We then
consider the relative sensitivity of the ensuing tests in
terms of power and how that power varies as a function
of resolution and the nature of the underlying signal.
This paper is concerned primarily with distributed
signals that have no a priori anatomical specification.
Activations in position emission tomography (PET)

and fMRI are almost universally detected using some
form of statistical mapping. The statistical processes
that ensue (i.e., statistical parametric maps or SPMs)
are usually characterized in terms of regional excur-
sions above some threshold and a P value is assigned to
these excursions. In this paper we reexamine the
nature of this statistical inference and ask ‘‘what is the
most powerful way to proceed?’’ with special reference
to high-resolution data, such as that obtained with
fMRI. The problem addressed, by the more advanced
approaches, is that of the multiple dependent compari-
sons embodied in the SPM. This dependency (of one
voxel’s value on its neighbors) is a result of smoothness
or autocorrelations in the data (or more strictly the
error terms). Put simply, the statistic at any voxel can
be used as the basis of statistical inference if, and only
if, that particular region was predicted in advance.
However, if the alternate hypothesis was anatomically
open (i.e., activations have occurred somewhere), then
we need to assess the statistics at all voxels individu-
ally and simultaneously, while ensuring that the prob-
ability of a false positive is less than the specified test
level a. In statistical terminology this is a multiple
comparisons problem. At each voxel we have a null
hypothesis of no activation. Considering all voxels
together we have a family of hypotheses and we wish to
assess the omnibus hypothesis that all the voxel (null)
hypotheses are true, while controlling the probability of
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a false positive or a type 1 error. There two forms of
control over family-wise type 1 error (FWE), weak and
strong, which determine the level at which departures
from the omnibus hypothesis can be reported (see
Holmes, 1994, for a fuller discussion).
A test procedure controls FWE in the weak sense if

the probability of false rejection of the omnibus hypoth-
esis is less than a. A procedure with only weak control
has no ‘‘localizing power.’’ If the null hypothesis is
rejected then all that can be said is that there is some
departure from the null hypothesis at some voxel(s).
Here the ‘‘level of inference’’ is the whole volume
analyzed.Aprocedure controls FWE in the strong sense
(at the voxel level) if the probability of a false positive
over any set of voxels, for which the null hypothesis is
true, is less than a, regardless of the truth of the null
hypothesis elsewhere. This more stringent criterion
gives localizing power: Voxels identified by such a
procedure may be declared individually significant and
the inference is at the voxel level.
The simplest multiple comparisons procedure which

maintains strong control over FWE is based on the
Bonferroni inequality: Here the voxel-level P values are
corrected for the number of voxels. However, for even
mild dependencies between the voxels, this method is
excessively conservative. This is important because,
even in fMRI data, physiological autocorrelations ren-
der nearby voxels correlated and a simple Bonferroni
correction becomes inappropriate. The most successful
solutions to the problem of statistical inference in
smooth spatially extended statistical processes are
predicated on the theory of Gaussian fields. Early work
was based on the theory of level crossings (Friston et
al., 1991) and differential topology (Worsley et al.,
1992). These approaches control FWE strongly, allow-
ing for inference at the voxel level: A corrected P value
is assigned to a voxel using the probability that the
observed voxel value, or a higher one, could have
occurred by chance in the volume analyzed. There have
been a number of interesting elaborations at this level
of inference [e.g., searching scale-space and other high-
dimensional SPMs (e.g., Siegmund and Worsley 1994)]
and results for many statistics now exist (e.g., Worsley,
1994). The next development, using the theory of
Gaussian fields, was to use the spatial extent of a
cluster of voxels defined by a height threshold (Friston
et al., 1994; see also Poline and Mazoyer, 1993, and
Roland et al., 1993). These procedures control FWE
strongly at the cluster level, permitting statistical
inference about each cluster, and are based on the
probability of getting a cluster of the size observed
(defined by a height threshold), or a larger one, in the
volume analyzed. In this paper we introduce a third
level, namely, the set level, which is based on the
probability of getting the observed number of clusters
(defined by a height threshold and an extent threshold),

or more, in the volume analyzed. This inference is
about the set of clusters (contiguous regions above
some height and size thresholds) or more simply about
the excursion set. Because there is only one ‘‘set’’ there
is no multiple comparison problem at this level of
inference. The objective of this work was to compare the
relative power of these different levels of inference
under different conditions. In the sense that all these
inferences are based on corrected P values we consider
only the case where no a priori knowledge about the
anatomy of the activations is available. We reiterate
that if the activated region is predicted in advance the
use of the above ‘‘corrected’’ P values is unnecessary
and inappropriately conservative. In this instance we
would recommend a simple Bonferroni correction for
the number of regions predicted.

The Theory of Gaussian Fields

The results mentioned above, and described more
fully below, derive from the theory of Gaussian fields.
The assumptions implicit in this approach are (i) that
the SPMs are reasonable lattice representations of
underlying continuous Gaussian fields, (ii) that the
components of the fields have a multivariate Gaussian
distribution and are wide sense stationary, and (iii)
that the height thresholds employed are high. Wide
sense stationary simply means that the multivariate
probability distributions of nearby points do not change
with position in the field. This implies that spatial
autocorrelations are invariant across the field. These
are reasonable assumptions in neuroimaging as long as
the voxel size is small relative to the smoothness. There
has been some interest in revising spatial extent ap-
proaches in the context of fMRI (where the voxel sizes
are larger in relation to resolution) using Monte Carlo
simulations and adjustments to the smoothness estima-
tors (e.g., Forman et al., 1995). Usual estimates of
smoothness (e.g., Friston et al., 1991; Worsley et al.,
1992) fail when the reasonable lattice assumption is
violated. In our work we sidestep this issue by simply
interpolating the data to reduce voxel size or smoothing
the data to increase smoothness. It is generally ac-
cepted that the voxel size should be about half the
full-width half maximum (FWHM) of the smoothness,
or less, for the reasonable lattice assumption to hold.
In statistical parametric mapping there is a caveat in

reference to the multivariate Gaussian assumptions.
The expressions presented below pertain to Gaussian
fields (as opposed to fields composed of statistics other
than Z). In many instances, the alternative hypothesis
is tested with a parametric map of the t statistic (i.e.,
SPM5t6). The SPM5t6 is usually transformed to a Gauss-
ian field (i.e., SPM5Z6) using some suitable transforma-
tion. This ‘‘Gaussianized’’ SPM5t6 only approximates a
true SPM5Z6 if the (effective) degrees freedom of the
underlying t statistic are reasonably high. Fortuitously,
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this is usually assured in single-subject fMRI and
multisubject PET studies. The good lattice and Gauss-
ian assumptions can be further ensured by slight
spatial smoothing of the data, which, in addition,
usually increases the sensitivity of the ensuing analy-
sis.
The high threshold requirement stems from the fact

that many of the distributional approximations used
are asymptotic and are only exact as thresholds tend to
infinity. In practice this means that the use of low
thresholds (e.g., u , 1.64) should be avoided (or at least
validated using simulations).

Strong vs Weak Control, Levels of Inference,
and Regional Specificity

There is a fundamental difference between rejecting
the null hypothesis of no activation at a particular voxel
and rejecting the null hypothesis over the entire vol-
ume analyzed. As noted above the former requires the
strongest control over FWE and the latter the weakest.
One way of thinking about this difference is to note that
if an activation is confirmed at a particular point in the
brain then, implicitly, the hypothesis of an activation
somewhere is also confirmed (but the converse is not
true). The distinction between weak and strong control,
in the context of statistical parametric mapping, re-
lates to the level at which the inference is made. The
stronger the control, the more regional specificity it
confers. For example a voxel-level inference is stronger
than a cluster-level inference because the latter disal-
lows inferences about any component voxel. In other
words cluster-level inferences maintain strong control
at the cluster level but only weak control at the voxel
level. Similarly set-level inferences are weaker than
cluster-level inferences because they refer to the set of
regional activations but not any individual region or
cluster in that set. Procedures with the weakest control
over FWE assess only the omnibus hypothesis and have
been referred to as ‘‘omnibus’’ tests (e.g., the g2 test, Fox
et al., 1989) and frame the alternative hypothesis in
terms of voxel-level effects anywhere in the brain.
These hypothesis are usually tested using all the voxels
above some threshold (e.g., exceedence proportion tests,
Friston et al., 1991) or use all the voxel values (e.g.,
quadratic tests, Worsley et al., 1995). A weaker control
over FWE, or high-level inference, has less regional
specificity but remains a valid way of establishing the
significance of an activation profile. Intuitively one
might guess that the weaker procedures provide more
powerful tests because there is a trade-off between
sensitivity and regional specificity. This is what we
found using a power analysis (see below). In this paper
we focus on the weaker hypotheses and consider voxel-
level and cluster-level inferences subordinate to set-
level inferences. This allows us to ask which is the most
powerful approach for detecting brain activations.

This paper is divided into three sections. The first
section describes the distributional approximations
used to make statistical inferences about a SPM and
frames the results to show that all levels of inference
can be regarded as nested, special cases of a single
general probability (namely, the probability of getting
c, or more, clusters with k, or more, voxels above height
u, in a volume S of smoothness W ). The second section
describes the details and rationale behind the power
analysis employed in the subsequent section. The final
section deals with the relative power of voxel-level,
cluster-level, and set-level inferences and its depen-
dency on signal characteristics, namely, the spatial
extent of the underlying hemodynamics and the signal
to noise ratio.

THEORY AND DISTRIBUTIONAL
APPROXIMATIONS

In this section we introduce the basic results from the
theory of Gaussian fields that are used to provide a
general expression for the probability of getting any set
of clustered voxels. We then show that voxel-level,
cluster-level, and set-level inferences are all special
cases of this general formation and introduce some
special cases that have not been considered before.

The General Expression

In what follows we assume that a D-dimensional
SPM conforms to a reasonable lattice representation of
a Gaussian field of volume S voxels and smoothnessW.
For a Gaussian random fieldW is related to the FWHM
of the resolution [W 5 FWHM(4 ln 2)21/2]. Equivalently
W 50 L 021/(2D), where L is the covariance matrix of the
field’s first partial derivatives. An excursion set is
defined as the set of voxels that exceeds some threshold
u. This excursion set comprises m clusters each with n
voxels. At high thresholdsm approximates the number
of maxima and has been shown to have a Poisson
distribution (Adler, 1981, Theorem 6.9.3, page 161).

P(m 5 c) < l(c, E5m6) 5 1/c!E5m6ce2E5m6, (1)

where E(m) is the expected number of maxima (i.e.,
clusters), where (Hasofer 1978):

E5m6 < S(2p)2(D11)/2W2DuD21 exp (2u2/2). (2)

The number of voxels n comprising a cluster is distrib-
uted according to:

P(n $ k) < exp (2bk2/D),

where

b 5 [G(D/2 1 1).E5m6/(S · F52u))]2/D (3)
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(Friston et al., 1994). In this formulation n is a continu-
ous variable measuring the volume of a cluster in
voxels, F52u6 is the cumulative density function for the
unit Gaussian distribution, and G denotes the gamma
function. With these results it is possible to construct
an expression for the probability of getting c, or more,
clusters of size k, or more, above a threshold u:

PW (u, k, c)

< 1 2 o
i50

c21

o
j5i

`

P(m5 j). 1
j

i 2 .P(n $k)i.P(n , k) j2i

< 1 2 o
i50

c21

l(i, E5m6.P(n $k)). (4)

This expression assumes that the m and n are
independent (i.e., the number of clusters in a volume
and their size are independent), which in turn depends
on the stationariness assumption. A full derivation of
this equation can be found in the appendix. Eq. (4) can
be interpreted, in an intuitive sense, in the following
way: Consider clusters as ‘‘rare events’’ that occur in a
volume according to the Poisson distribution with
expectation E5m6. Now the proportion of these rare
events that meet the spatial extent criterion will be
P(n $ k). These criterion events will themselves occur
according to a Poisson distribution with expectation
E5m6 · P(n $ k). The probability that the number of
events will be c or more is simply 1 minus the probabil-
ity that the number of events lies between 0 and c 2 1
[i.e., the sum in Eq. (4)].
We now consider various ways in which Eq. (4) can be

used to make inferences about brain activations. In
brief, if the number of clusters c 5 1 then the probabil-
ity reduces to that of getting one, or more, clusters with
k, or more, voxels. This probability can be used to
estimate the P value for a single cluster of volume k.
This corresponds to a cluster-level inference. Similarly
if c 5 1 and the number of suprathreshold voxels k 5 0,
the resulting cluster-level probability (i.e., the probabil-
ity of getting one or more excursions of any volume
above u) can be applied at the voxel level. In other
words the existing tests are special (limiting) cases of
set-level inferences. Note that k is a continuous mea-
sure of the volume; although k is expressed in units of
voxels, it pertains to a continuous Gaussian field.

Voxel-Level Inferences

Consider the situation in which the threshold u is the
statistic upon which we base our inference. In this
instance, the size k and the number of clusters c can
only take the values 0 and 1 (i.e., there is at least one
point at or above threshold with an unspecified size).
The corresponding probability PW(u, 0, 1) is the cor-

rected P value for the voxel in question where:

PW(u, 0, 1) < 1 2 exp (2E5m6) (5)

by Eq. (1) and because P(n . 0) 5 1. This, of course, is
simply the corrected probability based on the expected
number of maxima as employed in the early days of
statistical mapping in PET (e.g., Friston et al., 1991)
and elaborated using the expected Euler characteristic
as an alternative to E5m6 (Worsley et al., 1992).

Cluster-Level Inferences

Consider now the case in which we choose to base our
inference on spatial extent k. k is defined only by
specifying a height threshold U. In this instance c can
only take the value 1 (i.e., there is at least one cluster of
size k or more). The corresponding probability
PW(U, k, 1) is the corrected P value based on spatial
extent (Friston et al., 1994):

PW (U, k, 1) < 1 2 exp (2E5m6.P(n $ k)) (6)

and has proved to be more powerful than voxel-based
inference when applied to high-resolution data (see
below).

Set-Level Inferences

Now consider the instance where inference is based
on cluster number c. In this case both height U and
extent K threshold need to be specified before the
statistic c is defined. The corresponding probability
PW (U, K, c ) is given by Eq. (4) and is the corrected P
value for the set of activation foci reaching these joint
criteria. This level of inference has not been routinely
used in neuroimaging and one aim of this paper is to
evaluate its potential power. Current tests are based on
cluster-level inferences (i.e., c 5 1). Therefore, we want
to know whether the power of the analysis can be
enhanced by allowing c to be greater than 1 and, if so,
what are the best thresholds to adopt. This is the key
question addressed by the power analyses below.

A Special Case of Set-Level Inferences—
An Omnibus Test

There is a conceptual relationship between set-level
inferences and nonlocalizing tests based on the ex-
ceedence proportion (i.e., the total number of voxels
above a thresholdU ). Exceedence proportion tests (e.g.,
Friston et al., 1991) and thresholdless quadratic tests
(Worsley et al., 1995) have been proposed that test for
activation effects over the volume analyzed in a spa-
tially omnibus sense. These tests have not been widely
used because they have no localizing power and do not
pertain to a set of well-defined activations. In this sense
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these tests differ from set-level tests because the latter
do refer to a well-defined set of activation foci. However,
in the limiting case of a small spatial extent threshold k
the set-level inference approaches an omnibus test:

PW (U, 0, c) < 1 2 o
i50

c21

l(i, E5m6). (7)

This test simply compares the expected and observed
number of maxima (or clusters at high thresholds) in an
SPM using the known Poisson distribution under the
null hypothesis. This is a remarkably simple test that
could be considered alongside existing omnibus tests
(subject to the usual constraint of a relatively high
height threshold).

A POWER ANALYSIS

In this section we describe the model upon which the
power analysis was based and how we derived expres-
sions for power or sensitivity. The specificity of a test is
defined as the probability of correctly rejecting the null
hypothesis (i.e., the probability of a true nega-
tive 5 1 2 a, where a corresponds to the probability of
a false positive). The sensitivity of a test is, conversely,
the probability of correctly accepting the alternative
hypothesis for a given specificity. A plot of sensitivity
against a corresponds to a receiver operator character-
istic (ROC) curve. Examples of these curves will be
provided below. In order to determine the power of
different tests analytically it is necessary to define the
exact nature of the signal implied by the alternative
hypothesis. In this paper we consider a simple model
(first presented in Friston et al., 1994) which assumes
that the activations are spatially distributed with no
predilection for one anatomical area or another. Al-
though this model is used for mathematical conve-
nience it is not physiologically unreasonable and embod-
ies an ignorance of where the activations will be found.
More specifically, it models activations that are distrib-
uted throughout the volume and the power analysis
below applies to this, and only this, model. Different
models (i.e., a single activation focus) would yield
different results. In this paper we focus on a ‘‘distrib-
uted’’ model, where we expect set-level inferences to be
more sensitive.
Suppose the ‘‘signal’’ comprises Gaussian foci, of

random height, distributed continuously throughout
the volume. The shape of the signal is characterized by
the width ( f ) of these foci expressed as a proportion of
W. This signal can be modeled by a continuous en-
semble of kernels with randomly distributed heights or
equivalently by convolving an uncorrelated Gaussian
random process with a kernel of the same height. Let
the signal (following convolution with the point spread
function) have a standard deviation s, where s corre-

sponds to the amplitude of themeasured signal. Follow-
ing Friston et al. (1994) the threshold and smoothness
for the process under the alternative hypothesis are

u* 5 u.(1 1 s2)21/2 (8)

W* 5 W.[(1 1 s2)/(1 1 s2/(1 1 f 2))]1/2.

The specificity of any test based on u, k, and c is
simply 1 minus the probability a of rejecting the null
hypothesis when the null hypothesis is correct, where

a 5 PW (u, k, c). (9)

The sensitivity (or power) g(a), for a given specificity
(1 2 a), is the probability of accepting the alternative
hypothesis when it is correct. Under the alternative
hypothesis

g(a) 5 PW*(u*, k, c). (10)

By varying u, k, or c we obtain sensitivity as a
function of a. This is the ROC curve. The sensitivity at
a particular specificity [e.g., g(0.05)], or the area under
this curve, indexes the relative power of the test under
consideration. In what follows we will compare the
power of voxel-, cluster-, and set-level inferences for
signals of different sizes to identify the most powerful
sorts of inference.

Voxel-Level Inferences

In this instance the only parameter that can be
varied is the threshold u (i.e., k 5 0 and c 5 1): An
example of an ROC curve for voxel-level inferences is
seen in Fig. 1 (top). Unless otherwise stated, in this and
subsequent examples; s 5 0.3, f 5 2, S 5 64D, D 5 3,
and W corresponded to an isotropic smoothness of 3
voxels at FWHM. The influence of signal parameters on
power is shown in the lower panel by plotting g(0.05) as
a function of amplitude s and size f. It can be seen that
power is a strong function of signal amplitude s for all
sizes of signal. It is also evident that higher thresholds
are slightlymore powerful, when the signals are smaller
than the resolution ( f , 1). High-resolution fMRI and
optical imaging data suggest that hemodynamic changes
are typically expressed on a spatial scale of 5–8 mm.
This is around or below the resolution of PET (espe-
cially when the data are smoothed); however, it is
greater than the resolution of fMRI data, which, before
any interpolation or smoothing, can be equated with
voxel size (e.g., 3 mm). In other words in PET f , 1 and
in fMRI f . 1. This distinction is important and has
profound implications for the sensitivity of tests consid-
ered below.
From the point of view of voxel-level inferences,

power increases as f decreases. Therefore, power can be
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increased by smoothing the data (i.e., increasing W or,
equivalently, decreasing f ). This is a fundamental
observation and it is worth noting that high degrees of
smoothing have been employed in PET for many years.
It is important to note that this also holds for fMRI
when (and only when) using voxel-level inferences.
This argument discounts partial volume effects in the
sense that the model adopted here, for the alternate
hypothesis, does not include the impact on signal

amplitude s of smoothing to decrease f. This impact can
be marked if the signals are small in relation to the
smoothing kernel employed.

Cluster-Level Inferences

In this section we reiterate a previous observation
(made in Friston et al., 1994) that cluster-level infer-
ences are generally more powerful than voxel-level
inferences, with the exception that voxel-level infer-
ences are more powerful when f , 1 (as is often the case
for PET). It is useful to remember that voxel-level
inferences are a special case of cluster-level inferences
that obtain when k 5 0. Figure 2 (top) shows the ROC
curves for a cluster-level inferences at threshold U 5

2.8 (solid line). This curve was calculated by varying
the cluster threshold k in Eqs. 9 and 10 with u 5 U. The
equivalent ROC curve from the previous analysis is
also shown (broken line). The lower panel of Fig. 2
demonstrates the effect of different signal sizes (for a
fixed amplitude of s 5 0.3). This represents a plot of
g(a) as a function of u and f. It is immediately obvious
that for small signals (i.e., low resolution) the most
powerful tests obtain when the threshold is high and k
tends to 0. A vanishingly small k corresponds to
PW(u, 0, 1), a voxel-level inference. Conversely, when
f . 1 the more powerful tests are associated with a low
height threshold u and implicitly a high extent thresh-
old k. In practical terms these result suggest that
voxel-level inferences are best in PET and cluster-level
inferences should supervene in fMRI. This conclusion
appears to be consistent with the anecdotal experience
of those developing fMRI analysis strategies.

Set-Level Inferences

In this section we observe that set-level inferences
are generally more powerful than cluster-level infer-
ences and that this holds irrespective of relative signal
size f. We then proceed to ask what is the optimum
extent threshold for set-level inferences. In brief, we
observe that for f , 1, small values of k are most
powerful and conversely when f . 1, larger values are
appropriate.
Figure 3 shows the ROC curve that obtains by

varying the number of clusters c for a fixed threshold
U 5 2.8 and an extent threshold K 5 16 (the remaining
parameters are the same as those in the preceding
sections). It can be seen that the set-level inference
(solid line) is much more powerful than either the
cluster-level (dashed line) or voxel-level (broken line)
inferences. To determine whether there are any special
cases (c 5 1) of the set-level test (i.e., cluster or voxel
level) that are more powerful than the general case
(c . 1) we computed g(0.05) by allowing k to vary for
different values of u and c. The lower panels of Fig. 3
shows the result of this analysis and demonstrate that

FIG. 1. (Top) ROC curve for voxel-level inference PW(u, 0, 1),
whereW corresponds to a FWHM of 3 voxels and the volume S 5 643.
Signal amplitude s 5 0.3 andwidth f5 2. The dotted line corresponds
to a 5 0.05. In this, and subsequent, ROC curves, values of the
threshold used to vary specificity are provided on the curves. (Bot-
tom) Three-dimensional plot of power (a 5 0.05) as a function of
signal amplitude s and width f for the same smoothness and volume.
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the most powerful tests result when c. 1 (i.e., set level)
over the range of thresholds u (and implicitly k) em-
ployed. This is the case for both low- and high-
resolution data (left and right lower panels, respec-
tively). It can be seen that when c 5 1 the best
threshold is a high one when f , 1 and a low one when
f . 1. This is the observation made in the previous
section. The main conclusion here however is that

set-level inferences (c . 1) are generally the most pow-
erful for the model of signal adopted in this analysis.
It now remains to identify the thresholds that give

the most powerful set-level inference for distributed
signals. For this analysis we have used A (the area
under the ROC curve) for a range of parameters (see
the top panel of Fig. 4). Intuitively, for a fixed height
threshold and f . 1, one might conjecture that the
extent threshold should be designed to filter out clus-
ters that are due to noise, but should be low enough to
catch all the activations. If, on the other hand, the
signal size is less than the resolution ( f , 1) it is not
possible to discriminate between foci due to signal and
noise and the most powerful approach is that with the
weakest control (i.e., an omnibus test based on the total
number of maxima when k 5 0). Roughly speaking,
this is what we found. The lower panel in Fig. 4 showsA
as a function of f and k (for a threshold u 5 2.8). The
solid vertical line (in white) is the expected number of
voxels per cluster E 5n6 under the null hypothesis
[E5n6 5 G(D/2 1 1) · b2D/2 , see Friston et al. (1994)]. It
can be seen that when the signal is greater than the
resolution ( f . 1) the most powerful set-level infer-
ences obtain with extent thresholds that are about the
same size as, or larger than, the expected cluster size
due to noise (E5n6). Conversely, when the signal is
smaller than the resolution ( f , 1) the most powerful
extent threshold is small. More simply, the power is
maximizedwhen the extent thresholdmatches, roughly,
the size of the activation. These results suggest that for
PET ( f , 1) a small extent threshold is most appropri-
ate, whereas for fMRI an extent threshold of at least
E5n6 should be used. This conclusion was verified by
repeating this analysis for a range of signal amplitudes
and height threshold (results not shown). We do not
consider a more exhaustive characterization of the
optimum threshold in this paper because (i) in real life
signals may vary greatly in their spatial extent (i.e.,
there is no single optimum) and (ii) regional specificity
should not always be subordinated to sensitivity. For
example, it may be more biologically meaningful to
make a less powerful inference about a small set of
large activation foci that have some clear relationship
to anatomical or functional brain systems. This consid-
eration relates to the interpretation of the set of
clusters.

The Interpretability of Set-Level Inferences

Are set-level inferences really useful? Clearly if one
obtained 6 clusters with a P value of less than 0.05, and
4 clusters would have been expected by chance (i.e.,
E5m6 5 4), then it would be inappropriate to infer that
the clusters observed represented a distributed effect.
In this instance the set-level inference can only be used
in an omnibus sense (i.e., the stimulation was sufficient
to activate the brain in some way, but we cannot impute

FIG. 2. (Top) ROC curve for cluster-level inference PW(2.8, k , 1),
whereW corresponds to a FWHM of 3 voxels and the volume S 5 643.
Signal amplitude s 5 0.3 and width f 5 2. The broken line
corresponds to the equivalent voxel-level ROC curve of the previous
figure. (Bottom) Three-dimensional plot of power (a 5 0.05) as a
function of signal width f and threshold u, for the same smoothness,
volume, and s.
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any regionally defined effects). Conversely, consider the
case where 10 clusters were seen (at P , 0.05) and only
2 clusters were expected under the null hypothesis. In
this case it would be reasonable to equate the observed
set of clusters with a distributed system activated by
the task in question. This situation distinguishes set-
level inferences from omnibus tests and highlights
their potential usefulness. The key issue here is the
critical number of clusters relative to the number
expected by chance (i.e., ca relative to E5m6, where
P

W
(U, K, c a) 5 a). This ratio is a strong function of the

thresholds defining the clusters (i.e., U and K). Gener-
ally higher height thresholds give higher ratios: For
example, Fig. 5 shows the values of ca, E5m6, and their
ratio for S 5 323 voxels, D 5 3, and W equivalent to a
FWHM of 3 voxels. It can be seen that for U . 3.2 the
ratio is sufficiently high to support an interpretation of

the clusters obtained in terms of a distributed activa-
tion profile. The stepped nature of the curves in Fig. 5
reflects the fact that the critical values of c are discrete
numbers. The main point here is that set-level infer-
ences should be qualified by noting the expected num-
ber of clusters that would have occurred by chance. To
characterize a set as representing a ‘‘distributed sys-
tem’’ requires the observed number of clusters to greatly
exceed the expected number. This will only be the case
when higher thresholds are employed; otherwise, the
set-level inference confers no regional specificity. This
argument is about how one interprets a significant set
of clusters (with a small P value). Some sets may be
significant, but the number of clustersmay onlymargin-
ally exceed that expected by chance; other sets may be
equally significant but comprise many more clusters
than expected under the null hypothesis. Only in the

FIG. 3. (Top) ROC curve for set-level inference PW(2.8, 16, c), whereW corresponds to a FWHM of 3 voxels and the volume S 5 643. Signal
amplitude s 5 0.3 and width f 5 2. The dashed and broken lines corresponds to the equivalent cluster- and voxel-level ROC curves of the
previous figures, respectively. (Bottom) Three-dimensional plot of power (a 5 0.05) as a function of cluster number c and threshold u, for the
same smoothness, volume, and s. Left f 5 0.2 and right f 5 2.
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later case can the observed set of clusters be inter-
preted, in any meaningful way, as a set of true activa-
tions.

DISCUSSION

We have addressed the sensitivity of various tests for
activation foci in the brain by considering a hierarchy of
test, framed in terms of the level of inference (voxel
level, cluster level, and set level).All these nested levels

of inference are based on a single probability of obtain-
ing c, or more, clusters with k, or more, voxels above a
threshold u[PW(u, k, c)]. The higher the level of the
inference the weaker the hypothesis tested in terms of
regional specificity. The weakest case of set-level infer-
ences are based on the total number of maxima above a
threshold (i.e., k 5 0) and correspond to the old omni-
bus tests used in PET. Cluster-level inferences are a
special case of set-level inferences that obtain when the
number of clusters c 5 1. Similarly, voxel-level infer-

FIG. 4. (Top) ROC curve for set-level inference PW(2.4, 4, c), whereW corresponds to a FWHM of 3 voxels and the volume S 5 643. Signal
amplitude s 5 0.2 and width f 5 2. The shaded area corresponds to A and is a reflection of power over all specificities. (Bottom) Image format
representation of A as a function of signal width f and extent threshold k, for the same smoothness, volume, and s. The vertical line is the
expected number of voxels per cluster under the null hypothesis (E5n6). The horizontal line is f 5 1. The minimum of this gray scale is 0.59 and
the maximum is 0.84.
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ences are special cases of cluster-level inferences that
result when the cluster has an unspecified volume (i.e.,
k 5 0).

Levels of Inference and Power

On the basis of an analytical power analysis we
concluded that set-level inferences are generally more
powerful than cluster-level inferences and cluster-level
inferences are generally more powerful than voxel-level
inferences for distributed signals. For all levels of
inference the size of the underlying signal f (relative to
resolution W ) determines the most powerful threshold
to adopt. For set level inferences, if f . 1 (e.g., fMRI)
then the optimum extent threshold should be greater
than the expected number of voxels for each cluster
under the null hypothesis. If f , 1 (e.g., PET) the extent
threshold should be smaller if the most powerful test is
desired. For cluster-level inferences of f . 1 (e.g., fMRI)
then the height threshold u should be as low as possible
(without violating the assumptions of high thresholds);
we would recommend a value of around 2.4. If on the
other hand, f , 1 (e.g., PET) then a high threshold is
more powerful (e.g., 3.6). For voxel-level inferences the
most powerful tests obtain when f , 1.
We envisage that the main advantage of set-level

inferences will be found in fMRI. We have repeatedly
observed results that comprise a set of activation foci
that are very sensible in neurobiological terms; how-
ever, no single cluster is large enough, and no voxel is
high enough, to survive a correction for the large
volumes of high-resolution data analyzed. It is hoped
that set-level inferences will provide more latitude in
making inferences about these sets of activation foci.
The power analyses presented below examine sensi-

tivity as a function of the various thresholds employed
to define the excursion set. This is conceptually distinct
from maximizing sensitivity by smoothing the data in
space (e.g., Worsley et al., 1994) or time (e.g., Friston et
al., 1995) by appeal to the matched filter theorem. The
results presented here pertain to inferences about
excursion sets that could be applied to four-dimen-
sional processes that include a dimension of ‘‘smooth-
ing’’ or indeed a dimension of ‘‘thresholds’’ (i.e., a search
of smoothing or scale-space or an explicit search through
threshold-spaces).

The Nature of the ‘‘Signal’’

The analyses in this paper are predicated on a
particular model of ‘‘signal.’’ One important aspect of
this model is that the underlying hemodynamic re-
sponses are distributed throughout the volume ana-
lyzed. We appeal here to neurobiology to establish the
validity of this model, in the sense that most brain
processes are implemented by the integration of many
functionally segregated areas, which are anatomically
distributed. This balance between topographic segrega-
tion and functional integration is probably one of the
key characteristics of complex biological systems like
the brain. It should be noted, however, that many
experiments discount functional integration and at-
tempt to elicit activity in one area that is functionally
specialized for a single sensorimotor or cognitive pro-
cess. In this instance the signal may well comprise one
(or a small number of) foci and set-level inferences may
not be appropriate. In defence of set-level inferences
most functional anatomy studies of cognitive function
show that many separable cognitive components are
instantiated in distributed neuronal systems and there-
fore the set of activation foci that ensue are probably
more comprehensive descriptors of the evoked re-
sponses. The second point that can be made here is that
set-level inferences do not preclude lower-level infer-
ences. We develop this point below.

Which Level of Inference

When confronted with the task of characterizing an
unknown and probably distributed activation profile,
set-level inferences should clearly be considered, pro-
vided the implicit loss of regional specificity is appropri-
ate. However voxel-, cluster-, and set-level inferences
can be made concurrently. For example, using thresh-
olds of u 5 2.4 and k 5 6 allows for a set-level inference
in terms of the clusters reaching criteria. At the same
time each cluster in that set has associated with it a
corrected P value based on its size and the cluster-level
inference. Similarly, each voxel in that cluster can be
identified with a corrected P value based on the voxel-

FIG. 5. The critical (P , 0.001 5 a) cluster number ca, the ex-
pected number E5m6, and their ratio as a function of thresholdU for a
process of S 5 323,D 5 3, andW equivalent to a FWHM of 3 voxels.

232 FRISTON ET AL.



level inference (i.e., its Z value). The nested taxonomy
presented here allows for all levels to be reported, each
higher level providing protection for the lower level. As
long as the level of inference is clearly specified we can
see no reason why different levels cannot be employed

in characterizing the significance of the results ob-
tained. If the inferences are made in a step-down
fashion there should be no increase in FWE. Put simply,
if the number of clusters is significant, then those
clusters that are significantly large can also be identi-

FIG. 6. (Top) (SPM5Z6) This is a maximum intensity projection of the SPM5Z6. The display format is standard and provides three views of
the brain from the front, below, and the lefthand side. Data are presented only for clusters and regions that survive the height and extent
threshold detailed in the figure’s footnotes. The gray scale is arbitrary and the space conforms to that described in the atlas of Talairach and
Tournoux (1988). (Bottom) Tabular data characterizing the activation profile in terms of a set-level inference, or P value, based on the number
of clusters c, for each cluster a P value reflecting the cluster-level inference based on the number of voxels comprising the cluster k, and P
values corresponding to voxel-level inferences based on the Z score of selected maxima within each cluster. The uncorrected P value and
location (x, y, z mm) of these voxels are also provided. The footnotes specify the thresholds used and parameters relating to this particular
analysis.
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fied. Inferences about voxels within significantly large
clusters can then be made with impunity (this, of
course, does not preclude the use of any one level on its
own). An example of such a characterization is seen in
Fig. 6, which represents a standard (SPM96) analysis
of fMRI data. The experimental design and construc-
tion of the SPM5Z6 is not important here; suffice it to say
that the SPM reflects hemodynamic activations due to
intrinsically generated movements (relative to cued
movements). The key thing to focus on is the tabular
characterization of significant activations. u and k are,
here, the user-defined height and extent thresholds, c is
the number of observed clusters, k is the number of
voxels in each cluster, and Z are maxima in these
clusters. On the left the set-level inference suggests
that the 12 clusters that comprise the activation profile
are conjointly significant (P , 0.001). Within this set
some regions can be considered significant at the
cluster level (e.g., the cluster with a maximum at 224,
45, 12 mm, P , 0.034), whereas others are not (e.g., the
last cluster with 24 voxels). The last cluster is only
significant at a set level, i.e., when considered in the
context of the remaining 11 clusters. In a similar vein,
the voxel at 224, 45, 12 can be considered significant in
its own right because the voxel-level P value is P ,

0.001. Other voxels in this cluster, although part of a
significant cluster, are not significant at the voxel level
(e.g., the voxel at 225, 32, 12 mm, P 5 0.13). This
example highlights the potential benefit of set-level
inferences; in that the entire activation profile can be
described anatomically and characterized as signifi-
cant, therein providing a complete and comprehensive
picture of the activations, without having to omit
activations that fail to reach cluster- or voxel-level
significance.

Conclusion

We have reviewed current methods of inference using
the theory of Gaussian fields in statistical parametric
mapping and introduced a third level of inference that
may be useful in characterizing distributed activation
with functional neuroimaging.

APPENDIX

This appendix presents the derivation of Eq. (4). Let
q 5 E5m6 and p 5 P(n . k), then

o
j51

`

P(m 5 j). 1
j

i 2 .P(n $ k)i.P(n , k) j2i

5 o
v50

`

P(m 5 v 1 i).
(v 1 i)!

v!.i!
pi(p 2 1)v

where v 5 j 2 i. Substituting the Poisson form for
P(m 5 v 1 I ),

5 o
v50

` qv1ie2q

v!.i!
pi(p 2 1)v 5

1

i!
.(p.q)ie2q o

v50

`

(q(1 2 p))v/v!,

noting that the sum on the right is a Taylor expansion
of eq(12p) we have,

5
1

i!
(p.q)ie2pq 5 l(i, pq)

and finally,

PW (u, k, c) < 1 2 o
i50

c21

l(i, E5m6.P(n $k)).

ACKNOWLEDGMENTS

The authors were funded by the Wellcome trust. We thank all our
colleagues for invaluable discussion, in particular Keith Worsley.
J.B.P. was supported by EU: Human Capital and Mobility Grant No.
ERB4001GT932036. Note. The theory described in this paper has
been implemented in SPM96. This software (which runs inMATLAB,
Sherborn, MA, under UNIX) is freely available from the authors.

REFERENCES

Adler, R. J., andHasofer,A.M. 1981.The Geometry of RandomFields.
Wiley, NewYork.

Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M.,
and Noll, D. C. 1995. Improved assessment of significant activation
in functional magnetic resonance imaging (fMRI): Use of a cluster-
size threshold.Magn. Reson. Med. 33:636–647.

Fox, P. T., and Mintun, M. A. 1989. Noninvasive functional brain
mapping by change distribution analysis of averaged PET images
of H15O2 tissue activity. J. Nucl. Med. 30:141–149.

Friston K. J., Frith, C. D., Liddle, P. F., and Frackowiak, R. S. J. 1991.
Comparing functional (PET) images: The assessment of significant
change. J. Cereb. Blood FlowMetab. 11,690–699.

Friston, K. J., Worsley, K. J., Frackowiak, R. S. J., Mazziotta, J. C.,
and Evans, A. C. 1994. Assessing the significance of focal activa-
tions using their spatial extent.Hum. Brain Mapping 1:214–220.

Friston, K. J., Holmes, A. P., Poline, J.-B., Grasby, P. J.,
Williams, S. C. R., Frackowiak, R. S. J., and Turner, R. 1995.
Analysis of fMRI time-series revisited.NeuroImage 2:45–53.

Hasofer, A. M. 1978. Upcrossings of random fields. Suppl. Adv. Appl.
Prob. 10:14–21.

Holmes, A. P. 1994. Ph.D. thesis.
Poline, J.-B., and Mazoyer, B. M. 1993. Analysis of individual
positron emission tomography activation maps by detection of high
signal-to-noise-ratio pixel clusters. J. Cereb. Blood Flow Metab.
13:425–437.

Roland, P. E., Levin, B., Kawashima, R., and Ackerman, S. 1993.
Three dimensional analysis of clustered voxels in 15O-Butanol
brain activation images.Hum. Brain Mapping 1:3–19.

234 FRISTON ET AL.



Worsley, K. J., Evans, A. C., Marrett, S., and Neelin, P. 1992. A
three-dimensional statistical analysis for rCBF activation studies
in human brain. J. Cereb. Blood FlowMetab. 12,900–918.

Worsley, K. J. 1994. Local Maxima and the expected Euler character-
istic of excursion sets of x2, F and t fields. Adv. Appl. Prob.
26:13–42.

Worsley, K. J., Poline, J.-B., Vandal, A. C., and Friston, K. J. 1995.

Tests for distributed, nonfocal brain activations.NeuroImage 2:183–
194.

Siegmund, D. O., and Worsley, K. J. 1994. Testing for a signal with
unknown location and scale in a stationary Gaussian random field.
Ann. Stat. 23:608–639.

Talairach, J., and Tournoux, P. 1988. A Co-planar Stereotaxis Atlas of
a Human Brain. Thieme, Stuttgart.

235LEVELS OF INFERENCE AND POWER IN PET AND fMRI


