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This paper presents amultivariate analysis of evoked
responses and their spatiotemporal dynamics as mea-
sured with electro- or magnetoencephalography. This
analysis uses standard techniques (ManCova) to make
possible statistical inference about differential re-
sponses, after the data have been transformed using
singular value decomposition. The generality of this
approach is limited only by the assumptions implicit in
the general linear model and can range from simple
analyses like Hotelling’s T2 test (in comparing evoked
responses among different conditions) to complex
analyses of amultivariate regression type (e.g., charac-
terizing the response components associated with a
behavioral or psychophysical parameter). To illustrate
the technique we have characterized time-dependent
changes (both within and between trials) in magnetic
fields, evoked by self-paced movements. Our illustra-
tive analysis showed that movement-evoked compo-
nents were less prone to adaptation than premove-
ment components, suggesting that functionally distinct
(preparatory and early executive) biomagnetic signals
showdifferential adaptation. r 1996 Academic Press, Inc.

INTRODUCTION

This paper is about characterizing evoked electrical
or biomagnetic brain responses and making statistical
inferences about these (differential) responses. The
technique employed usesmultivariate analysis of covari-
ance (ManCova) following dimension reduction using
the singular vectors or spatiotemporal modes of the
original data. The aim of this paper is to introduce the
proposed analysis at a conceptual and procedural level.
The importance of the approach lies in facilitating the
application of standard multivariate techniques (of a
powerful and general nature) to evoked responses in
electroencephalographic (EEG) andmagnetoencephalo-
graphic (MEG) data. To illustrate this application we
have chosen a neurobiological question that would not

be easy to address using conventional averaging ap-
proaches: Namely, ‘‘do the magnetic fields evoked by
self-paced finger movements show significant adapta-
tion with motor practice?’’ This paper is a methodology
paper and focuses on the analysis of a single data set in
order to provide operational details that could be more
widely applied.

The Research Question

Our example pertains to time-dependent changes in
the form ofmovement-relatedmagnetic fields (MRMFs)
during a self-paced, stereotyped motor act. The se-
quence of activation and the integration of cortical
activity in the initiation and execution of voluntary
movements are important issues in humanmotor physi-
ology (Toro et al., 1994). One key aspect of this integra-
tion relates to plasticity, adaptation, and other time-
dependent neurophysiological changes during motor
practice and learning. These changes can be seen over
many time scales: In man, physiological adaptation
during motor practice has been demonstrated in the
cerebellum and SMA, over an hour or so, using PET
(Friston et al., 1992). Subsequently, functional imaging
has been used to examine the neurophysiological corre-
lates of motor learning within (Grafton et al., 1992) and
between (Karni et al., 1995) scanning sessions. Here we
examine time-dependent changes in evoked neural
activity that are expressed over the first minute or so of
motor practice using MEG data.
Self-paced voluntary movements are associated with

the expression of discrete MRMFs that have been
divided into a series of waveform components (Kristeva
et al., 1991). The readiness field corresponds to a slowly
increasing magnetic field strength that precedes the
movement. This component peaks at about 100 ms
before movement onset and is called the motor field
(MF).A further peak that occurs about 100ms following
movement onset has been labeled movement-evoked
field 1 (MEF1). Additional movement-related peaks in
the postmovement period have also been described. On
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the basis of their similar timing, the readiness field and
MF have been identified with the Bereitshaftspotential
and the peak of the negative slope seen in EEG
recordings. These components are associated with mo-
tor intention and preparation (Kornhuber and Deecke,
1965; Libet et al., 1982). Similarly, the MEF1 has been
related to the frontal peak of the motor potential, a
large amplitude peak in the EEG with frontocentral
negativity and parietal positivity. For the purposes of
this paper we divide the components of MRMFs into
preparatory (i.e., the readiness field and MF) and
executive (i.e., the movement-evoked MEF1 and subse-
quent components related to reafference and feedback).
The hypothesis we consider is that the spatiotemporal
dynamics of these two components can be dissociated in
terms of their adaptation during continued perfor-
mance: As any repetitive motor act becomes automatic,
the preparatory and intentional elements could show
time-dependent changes far in excess of the neural
instantiation of the movement itself. For example,
adaptation of evoked responses has been described by
Walter et al. (1964) in their description of the contin-
gent negative variation. The hypothesis then is that
premovement components will show significant adapta-
tion, whereas postmovement components will not.
In summary, the aim of this paper is to introduce a

general multivariate approach to evoked magneto- or
electrophysiological transients. To illustrate how this
approach works we have used it to see if intentional
and preparatory components of MRMFs show short-
term time-dependent changes that are distinct from
executive and movement-evoked components. The im-
plications for averaging approaches (that assume all
evoked transients are realizations of the same event)
are obvious. This paper is divided into two parts. The
first deals with the statistical background and opera-
tional equations required to implement the analysis
and the second deals with an application to multichan-
nel MEG data obtained from a normal subject during
the repetitive performance of self-paced movements.
The analysis is performed on the original data; we
make no attempt to model discrete or distributed
sources because the questions here relate to temporal
dynamics. However, the endpoint of the analysis is a
(canonical) spatiotemporal mode that can be considered
as a short de-noised time series. This could be subject to
source estimation techniques in the usual way [e.g.,
dipole models (Hamalainen et al., 1993) or magnetic
field tomography (Ioannides, 1995)]. To comment on the
spatial topography of our results we use a V3 transfor-
mation (Ioannides et al., 1990) following decomposition
of the spatiotemporal mode into a series of spatial
modes. The statistical procedures described in this
paper can be found in any standard introductory text
on multivariate statistics. We have used Chatfield and
Collins (1980).

STATISTICAL BACKGROUND

Dimension Reduction

The notation adopted here uses italics for indices and
scalars and boldface for column vectors (lowercase) and
matrices (uppercase). Consider N time series (e.g.,
MEG data from N channels) divided into I blocks,
trials, or epochs (e.g., epochs that are time-locked to a
sensory or behavioral event). Each epoch contains E
time bins.Asingle spatiotemporalmultivariate observa-
tion is taken to be all the N · E observations in one
epoch. Note that there is no averaging of the data—
each epoch corresponds to a single trial. The first step
inmultivariate analysis is to ensure that the dimension-
ality of the data, N · E, is smaller than the number of
observations, I. Clearly this is not the case, because
there are generally more time bins than epochs; there-
fore the data have to be transformed. The dimension
reduction proposed here is straightforward and uses a
singular value decomposition (SVD) of the data to give
a reduced set of components for each multivariate
observation. Each component corresponds to a singular
vector, eigenvector, principal component, or spatiotem-
poral mode (in the present context all these are equiva-
lent). We use the term spatiotemporal mode to distin-
guish it from a spatial mode (see Friedrich et al., 1991;
Fuchs et al., 1992; Friston et al., 1993). A spatiotempo-
ral mode spans not only space (channels) but also time
(within an epoch). The rationale for this particular
transformation is that it preserves the greatest amount
of epoch to epoch variance. The singular vectors and
their expression over epochs are given by

[VSU] 5 SVD5X*6,

where

X* 5 V · S · UT (1)

and

X 5 V · S

Here X* is an I 3 N · E matrix of data with one
mean-corrected column for each component (channel
and time bin) and one row for each epoch. S is an I 3 I
diagonal matrix of singular values and V is an I 3 I
matrix of singular vectors (over epochs). Both V and U
are orthogonal matrices. The spatiotemporal modes
(over channels and time) are the columns ofU and their
expression over epochs are the columns of X. The I 3 I
matrix X has one column for every mode and one row
for each epoch. The elements of X are xij—the activity of
the jth mode in epoch i. Only the J columns of X and U
associated with the J largest singular values are used
in the ensuing analysis. We use a threshold of unity
(after the singular values have been scaled such that
their sum of squares 5 I ). This is an arbitrary but
commonly employed criterion.
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The Statistical Model

In matrix notation the general linear model is

X 5 Gb 1 r, (2)

where X is designated the response variable. The
general linear model assumes that the errors in each of
the J columns of r have a multivariate normal distribu-
tion. The I 3 K matrix G is called the design matrix.
The design matrix has one column for each of the K
effects (factors or covariates) in the model. b is the
parameter matrix with one column of parameters for
each mode, containing K parameter estimates. The
elements of G are explanatory variables relating to the
conditions under which the observation (e.g., epoch)
was made. These coefficients can be (i) covariates (e.g.,
reaction time, performance, interstimulus interval), in
which case Eq. (2) is a familiar multivariate regression
model, or (ii) indicator-type variables, taking integer
values to indicate the level of a factor (e.g., experimen-
tal condition, drug) under which the response variable
or event-related transient wasmeasured. Some of these
effects will be of interest and others will not. G can be
partitioned into effects of interestGh and confoundsGc,
i.e.,G 5 [GhGc], and similarly b 5 [bh

T bc
T]T. We assume

here that these two partitions are orthogonal, i.e., Gh
T ·

Gc 5 0, and, if they are not, they are made to be (i.e.,
by replacing the original Gc with Gc 2 Gh · (Gh

T · Gh)21

Gh
T · Gc). A confound is used to designate an effect that

is not of interest and would otherwise ‘‘confound’’ the
analysis of effects that are of interest. An example
might be interstimulus interval. In this case Gc would
be a mean-corrected column vector whose elements
corresponded to the interstimulus interval for each
epoch. The effects of interest specify the effects, differ-
ences, or changes under investigation. The simplest
form for Gh would be a column of 1’s, and this would
model the effects that were common to all epochs (i.e.,
the averaged evoked response). Least-squares esti-
mates of b, sayB 5 [Bh

TBc
T]T, are given by

B 5 (GTG)21GTX. (3)

Statistical Inference

In this section we address statistical inference about
the effects of interest (modeled by Gh). Significance is
assessed by testing the null hypothesis that these
effects do not significantly reduce the error variance (or
alternatively the null hypothesis that bh is 0). The null
hypothesis can be tested in the following way. The sums
of squares and products due to error R(V) are obtained
from the difference between the actual and the esti-
mated values of X:

R(V) 5 (X 2 G ·B)T(X 2 G · B). (4)

R(V) represents an estimator of the dispersion matrix
of the underlying error terms. The sums of squares and
products due to effects of interest are given by

T 5 (Gh · Bh)T · (Gh · Bh). (5)

The error sums of squares and products under the null
hypothesisR(V0) (i.e., if the effects of interestGh do not
exist) are simply

R(V0) 5 (X 2 Gc · Bc)T · (X 2 Gc · Bc). (6)

Significance can now be tested with

L 5 0R(V) 0 / 0R(V0) 0, (7)

whereL is Wilk’s statistic (known asWilk’s Lambda). 0 · 0
denotes the determinant. A special case of this test is
Hotelling’s T 2 test, which applies when Gh simply
compares one condition with another (see Chatfield and
Collins, 1980). Under the null hypothesis, and after
transformation, L has a x2 distribution,

2 (r 2 ((J 2 h 1 1)/2)) 3 log(L) , x2(J · h), (8)

where r is the degrees of freedom associated with the
error terms and is the rank of the data minus the
number of effects modeled, I 2 rank(G). J is the
number of modes in the J-variate response variable X
and h is the degrees of freedom associated with the
effects of interest, rank(Gh).

Characterizing the Effect

Once it has been established that the effects of
interest are significant (e.g., the evoked response is not
0, or there are differences between activation and
baseline epochs, or there is a significant effect of
reaction time) the final step is to characterize these
effects in terms of their spatiotemporal dynamics. This
characterization uses canonical variates analysis. The
objective is to find the linear combination (compound or
contrast) of the components of X, in this case the
spatiotemporal modes, that best expresses the activa-
tion effects when compared to error effects. More
exactly, we want to find c1 such that the variance ratio,

(c1T · T · c1)/(c1T · R(V) · c1),

is maximized (Chatfield and Collins, 1980). Let z1 5 X ·
c1, where z1 is the first canonical variate and c1 is a
canonical vector (defined in the space of the spatiotem-
poral modes) that maximizes this ratio. c2 is the second
canonical image that maximizes the ratio subject to the
constraint Cov5c1 c26 5 0, and so on. The matrix of
canonical images C 5 [c1, c2, . . . , cJ] is given by the
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solution of the generalized eigenvalue problem,

T · C 5 R · C · Q, (9)

where Q is a diagonal matrix of (scaled) canonical
values. The corresponding canonical (spatiotemp
oral) modes mj is obtained by rotating cj back into
‘‘channel’’ space with the original modes over channels
and timeU:

mj 5 U · cj. (10)

The column vector m1 now contains the N · E values
defining the spatiotemporal mode that best character-
izes the effects one is interested in. In other words, U ·
c1 is the channel-space representation of c1 and c1 is the
profile of spatiotemporal modes that maximizes the
sum of squares due to interesting effects, relative to
error. Subsequent canonical spatiotemporal modesm2,
. . . , mh are obtained using Eq. (10). The next step
involves determining how many of the canonical modes
are significant. This is done by testing for the dimension-
ality of the result using the canonical values in the
leading diagonal of Q (i.e., Q1, Q2, . . . , QJ). Under the
null hypothesis the probability that the dimensionality
is greater than t is tested with

(r 2 ((J 2 h 1 1)/2 · log[p
t11

J

(1 1 Qj)]
(11)

, x2((J 2 t) · (h 2 t)),

which is distributed according to the x2 distribution.
Note that when t 5 0 this is the same statistic as Wilk’s
Lambda. By computing a P value for each value of t we
can infer how many of the canonical modes are signifi-
cant.
The final step in this characterization is to describe

the significant canonical modes. Because the canonical
modesmj span time, they are time series and each can
be decomposed into a series of spatial modes using Eq.
(1) (replacing X* with the N 3 E matrix formed from
the appropriate elements of the vectormj). It should be
noted that this SVD is arbitrary in the sense it simply
orthogonalizes the variance over time (within the ep-
och) that constitutes the canonical mode. Nevertheless
spatialmodes can be a very convenient way of character-
izing and reporting complex spatiotemporal dynamics.
We hope to illustrate this point below.

AN APPLICATION TO MEG DATA

The MEG Data

MEG data were obtained from a normal subject
during self-paced unilateral movements of a joystick
using a Siemens KRENIKUN 37-channel machine. The

subject was trained to perform a joystick movement,
with the right hand, every 2 s or so. The data were
acquired every millisecond for 76 movements. ECG
artifacts were removed using linear regression. The
MEG data were high pass filtered by convolving with a
512-ms Gaussian kernel and subtracting the smoothed
time series from the original. The data were then
smoothed with a 16-ms Gaussian kernel. Each time
series was divided into 76 epochs spanning 1000 ms
before movement onset to 1000 ms after. Movement
onset was defined as the onset of joystick movement as
recorded by a transducer and registered in a trigger
‘‘channel.’’ The data were decimated to 8-ms binwidths
and corrected to a mean of 0 within each epoch. A large
data matrix X* was constructed. Each of the I 5 76
rows of X* contained the data over E 5 250 time bins
for each of theN 5 37 channels.

MOVEMENT-RELATED MAGNETIC FIELDS

In the following sections we describe how the steps
described above were applied to (i) test for evoked
responses, (ii) test for time-dependent changes in these
responses, and (iii) identify whether these changes
represented pre- or postmovement adaptation. We also
include a section that examines the validity of some of
the assumptions that are implicit in the general linear
model.

Dimension Reduction, the Design Matrix,
and Statistical Inference

The data were reduced using SVD as described in Eq.
(1). These were J 5 25 singular values greater than
unity and the epoch by epoch expression of the corre-
sponding modes X were subject to ManCova as de-
scribed above. In this example Gh contained three
columns representing the effects of interest Gh 5 [G1
Gtime]. The first columnG1 was a column of 1’s modeling
a time-invariant evoked response. The remaining ef-
fects were time-dependent changes in this response
modelled in terms of two temporal basis functions
constituting the two columns of Gtime. These functions
comprised an exponential decay (decay parameter 5 1
min) and its derivative. Both were mean corrected and
Euclidean normalized. Linear combinations of the these
functions can model a wide variety of time-dependent
forms of adaptation. In this analysis there were no
confounds and consequently Gc was empty. The result-
ing design matrix G is shown on the top left of Fig. 1 in
image format. Note that this approach to detecting
evoked responses could not be effected with conven-
tional averaging because we have explicitly allowed for,
and modeled, (unspecified) nonlinear changes in the
evoked response with time. Wilk’s Lambda suggested
that the evoked responses were very significant
(P , 0.0001, x2 5 215.7, df 5 75).

170 FRISTON ET AL.



Characterizing the Response

The nature of this significant response is itself multi-
variate and can be characterized by the canonical
(spatiotemporal) modes m1, m2, . . . , mh. In this case
h 5 rank(Gh) 5 3 and there are only three canonical
modes. Their relative importance is reflected in their
respective canonical values, which are shown in the
bottom left of Fig. 1. The filled bars represent canonical
modes that can be considered significant according to
the test for the dimensionality of the response above. It
is seen that only the first twomodes are significant. The
expressions over epochs z1, z2, and z3 are seen on the
bottom right. The first spatiotemporal mode m1 is
relatively constant in its expression over epochs. The
second mode shows a profound time-dependent behav-
ior. The first canonical modem1 is shown in more detail
in Fig. 2. The top is again z1—the expression over
epochs plotted as a function of time. The bottom shows
the spatial distribution at selected points in time,
within an epoch. These data are displayed using a V3
transformation (Ioannides et al., 1990). The V3 transfor-
mation is a simple linear operator that uses the partial
derivatives of the signals, in space, to produce an image
that gives a rough idea of the underlying current source
distribution (it can be likened to edge enhancement in
image restoration). It has been applied previously to

the analysis of single-trial MEG data (Liu and Ioan-
nides, 1995). Following V3 transformation the lengths
of the ensuing flux vectors were projected onto an
ellipsoidal surface for display. It is immediately obvious
that the dynamics of this spatiotemporal mode are
complicated and not easy to describe as they stand. A
more revealing characterization of this mode is pro-
vided in Fig. 3. Here the first canonical mode has been
decomposed into a series of orthonormal spatial modes.
The eigenvalue (singular values squared) spectrum
(Fig. 3, top) shows that only three spatial modes had an
eigenvalue greater than unity. The spatial distribution
of these modes is seen in the middle and their time-
dependent expressions are shown at the bottom. The
first mode is most prominent over the central regions
and peaks some 400 ms after movement onset (solid
line). This may correspond to the late movement-
related components. The second (broken line) spatial
mode is most expressed in posterior regions and peaks
first just after movement onset. This may correspond to
the MEF1. The third (dotted line) mode covers more of
the frontocentral regions and increases progressively in

FIG. 1. Multivariate analysis of movement-related magnetic
fields. (Top left) The design matrix used in the analysis of evoked
responses. The first column is a column of 1’s, G1, and models
time-independent response components. The remaining two col-
umns, Gtime, represent two temporal basis functions that model
time-dependent effects. (Bottom left) Eigenvalues of T reflecting the
relative contributions of the spatiotemporal modes that embody the
effects of interest (evoked response). (Bottom right) The expression of
the first three spatiotemporal modes over epochs as a function of time
(i.e., z1, z2, and z3).

FIG. 2. The first spatiotemporal modem1. (Top) Expression of the
first spatiotemporal mode over epochs as a function of time (i.e., z1).
Each circle corresponds to an epoch. (Bottom) Time-series representa-
tion at 12 equally spaced time bins during the epoch.At each time bin
the activity over channels was used to construct this image represen-
tation of the spatial components of this spatiotemporal mode using a
V3 transformation. The images are viewed from the top of the head
with the nose pointing downward. 0 ms represents movement onset.
Each image has been scaled to its maximum.
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the 500-ms premovement period. Although this mode
peaks after movement onset it may include the readi-
ness field and MF. All three modes show a degree of
lateralization toward the left, as would be expected
with right-hand movements.

Were the Parametric Assumptions Valid?

The general linear model assumes that the error
terms are independent and normally distributed. In
EEG and MEG data analysis it is sometimes necessary
to ensure that this is the case. To demonstrate that the
error terms in this analysis do conform to parametric
assumptions we have taken the distribution of error
terms in the columns of r above and scaled then to unit
standard deviation. The pooled distribution of these
terms is seen in Fig. 4 (solid line) and compares well
with the required Gaussian distribution (dotted line).

Adaptation

In the previous section we demonstrated that evoked
responses (with or without some time-dependent adap-

tation) were significant. In this section we ask ‘‘was the
time-dependent component significant in itself and if so
was this adaptation pre- or postmovement (or both).’’
This allows us to demonstrate how to use ManCova to
ask if particular components of a response are signifi-
cant in isolation. In this case do the effects modeled by
Gtime contribute significantly to the overall responses?
This is answered by making Gh 5 Gtime and relegating
the time-invariant component modeled by G1 to the
confound partition of the design matrix, i.e., Gc 5 G1.
By repeating the above analysis with this new design
matrix G 5 [Gh Gc] we were able to demonstrate that
the adaptation was itself significant (P , 0.0011,
x2 5 88.95, df 5 52).

Differential Adaptation in Pre- and
Postmovement Components

In this the final section we address the hypothesis
that the intentional and preparatory (i.e., premove-
ment) response components would show more adapta-
tion than executive postmovement components. To
answer this question we repeated the analysis of the
previous section but using only (i) time bins from the
500 ms preceding, and (ii) the 500 ms following, move-
ment onset. Only the premovement analysis was, as
predicted, significant (P , 0.017, x2 5 58.85, df 5 38).
The corresponding result for the postmovement period
was P 5 0.49 (x2 5 35.58, df 5 36). This suggests that,
whatever the functional significance of the time-
dependent changes may be, they are differentially
expressed in the preparatory and executive compo-
nents of the MRMFs. The first canonical (spatiotempo-

FIG. 3. Spatial modes of the first spatiotemporal mode. (Top)
Eigenvalue spectrum showing that the first spatiotemporal mode is
largely accounted for by three orthogonal spatial modes. (Middle) The
spatial distribution of these spatial modes. The spatial modes were
computed in the space of the original 37-channel data and subject to a
V3 transformation. (Bottom) Temporal expression of the first three
spatial modes—solid (1st), broken (2nd), and dotted (3rd) lines.

FIG. 4. Distribution of error terms. (Solid line) Empirically
determined distribution of the error terms after normalization to unit
standard deviation. (Dotted line) Unit Gaussian distribution.
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ral) mode for premovement adaptation is shown in Fig.
5. It can be seen that this mode has a complicated time
course with pronounced attenuation over the 1st min,
followed by a more protracted rebound. The first three
spatial modes of this canonical mode show that the
adaptation is much more bilateral than the MRMFs in
Fig. 3 and involve mostly frontal and central regions
(Fig. 6).
These results confirm our initial hypothesis and

suggest that (nonmonotonic) adaptation is prevalent in
the 1st min or so of motor practice with the possibility
that the movement-evoked (executive) responses are
relatively exempt from these time-dependent changes
relative to preparatory neuromagnetic signals.

CONCLUSION

In this paper we have presented a general multivari-
ate analysis of evoked responses and their spatiotempo-
ral dynamics asmeasuredwithMEG. The key contribu-
tion of this paper is a method of applying the general
linear model, and the statistical inference that ensues,
to evoked EEG and MEG data. This application uses
ManCova following dimension reduction of the original

data. To illustrate the analysis we have looked at
time-dependent changes in MRMFs during self-paced
movements. Using these techniques we were able to
show that, in a single subject, MRMFs show significant
adaptation over the 1st min or so of practice. These
changes appeared to differentially affect pre- and post-
movement responses where adaptation was most
marked in preparatory, premovement components.

ManCova and Spatiotemporal Modes

The analysis presented above represents a novel
application of standard multivariate statistics. The
importance of this application relates to the latitude
provided in experimental design and the inferences
that are sought. In the present example we were able to
ask questions about time-dependent changes in evoked
responses and make statistical inferences that would
not be possible using conventional evoked response
averaging. The stages of the analysis involve (i) dimen-
sion reduction using the singular vectors of the original
data, where the response variable includes all observa-
tions from an epoch over all channels (this can be
thought of as a de-noising device, required for the
subsequent multivariate analysis); (ii) ManCova, using

FIG. 5. The first spatiotemporal mode of premovement adapta-
tion. As for Fig. 2, but in this case only data from the 500 ms
preceding movement onset have been used and only the time-
dependent changes were considered in the canonical variates analy-
sis (the time-invariant component was modeled in the design matrix,
but as a confound).

FIG. 6. Spatial modes of first premovement spatiotemporal mode.
As for Fig. 3 but using the first premovement spatiotemporal mode
shown in Fig. 5.
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the general linear model to make statistical inferences;
and (iii) characterization of the interesting effects (i.e.,
averages, differences, or changes in evoked responses)
using spatiotemporal modes and subsequent decompo-
sition into spatial modes.

Implication and Applications

Although the ‘‘average’’ evoked response is a conve-
nient summary of the data, its use can entail a consider-
able loss of information (Ioannides, 1994). One implica-
tion of the results presented here, for conventional
averaging approaches to evoked response data, is that
the sensitivity to detecting evoked responses could be
enhanced if short-term changes in the response were
appropriately modeled. There are many parameters
other than time that may account for differences among
evoked responses, for example, the interstimulus inter-
val, performance parameters, behavioral contingen-
cies, and so on. All these attributes of motor perfor-
mance can be brought under experimental control (or
measured) and, with the techniques described here,
used to dissociate evoked response components, in
order to make inferences about their functional signifi-
cance.
Imprecision in defining the onset of an epoch means

that ensuing errors in time locking will obscure any
high frequency or transient evoked components. For
example, to make statistical inferences about event-
related desynchronization (Pfurtscheller and Aranibar,
1979) or systematic modulation of spectral density at a
particular frequency, one would require both precise
time locking (an experimental requirement) and pre-
cise phase locking (a physiological requirement) at the
frequency in question. One alternative and obvious
approach to characterizing event-related desynchroni-
zation is to replace the elements of the original MEG
data matrix X* with equivalent ‘‘instantaneous’’ esti-
mates of power spectral density at the frequency of
interest. In this application it is important to ensure
that appropriate transformations are applied to the
data to render the distribution of error terms Gaussian.
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