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+ + 
Abstract: in this paper we present a general multivariate approach to the analysis of functional imaging 
studies. This analysis uses standard multivariate techniques to make statistical inferences about activation 
effects and to describe the important features of these effects. More specifically, the proposed analysis uses 
multivariate analysis of covariance (ManCova) with Wilk's lambda to test for specific effects of interest 
(e.g., differences among activation conditions), and canonical variates analysis (CVA) to characterize 
differential responses in terms of distributed brain systems. The data are subject to h4anCova after 
transformation using their principal components or eigenimages. After sigruficance of the activation effect 
has been assessed, underlying changes are described in terms of canonical images. Canonical images are 
like eigenimages but take explicit account of the effects of error or noise. The generality of this approach is 
assured by the general linear model used in the ManCova. The design and inferences sought are 
embodied in the design matrix and can, in principle, accommodate most parametric statistical analyses. 
This multivariate analysis may provide a statistical approach to PET activation studies that 1) comple- 
ments univariate approaches like statistical parametric mapping, and 2) may facilitate the extension of 
existing multivariate techniques, like the scaled subprofile model and eigenimage analysis, to include 
hypothesis testing and statistical inference. 
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INTRODUCTION 

The aim of this paper is to describe how a standard 
multivariate analysis can be applied to functional 
images in a voxel-based fashion. Specifically, we intro- 
duce multivariate analysis of covariance (ManCova) 
and canonical variates analysis (CVA) to characterize 
activation effects and address the special issues that 
ensue. The proposed approach characterizes the brain's 
response in terms of functionally connected and dis- 
tributed systems. This characterization is usually asso- 
ciated with eigenimage analysis using singular value 

Received for publication December 28,1995; accepted March 8,1996. 
Address reprint requests to Karl J. Friston, Wellcome Department of 
Cognitive Neurology, The National Hospital, Queen Square WClN 
3BG, UK. 

decomposition or principal component analysis [see 
Friston et al., 1993, 1994; Moeller et al., 1987, for a 
discussion of the conceptually related scaled subpro- 
file model (SSM)]. Eigenimages figure in the current 
analysis in the following way. One problematic issue, 
in the multivariate analysis of functional imaging data, 
is that the number of samples (i.e., scans) is usually 
very small in relation to the number of components 
(i.e., voxels) of the observations. This issue is resolved 
by analyzing the data, not in terms of voxels, but in 
terms of eigenimages, where the number of eigenim- 
ages is much smaller than the number of voxels. The 
importance of the analysis presented in this paper is 
fourfold. 1) Unlike previous multivariate approaches it 
provides for statistical inferences (i.e., a P value) about 
the significance of the brain's response in terms of 
some hypothesis. 2) The approach implicitly takes 
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account of spatial correlations in the data without 
making any assumptions. 3) The canonical variates 
analysis produces eigenimages (canonical images) that 
capture the activation effects, while suppressing the 
effects of noise or error. 4) The theoretical basis is 
well-established and can be found in most introduc- 
tory texts on multivariate analysis. 

Functional mapping studies are usually analyzed 
with some form of statistical parametric mapping. 
Statistical parametic maps are spatially-extended sta- 
tistical processes that are used to test hypotheses 
about regional effects. Statistical parametric maps 
(SPMs) use univariate tests at each and every voxel 
and are interpreted by assuming that, under the null 
hypothesis, they behave as smooth Gaussian fields 
[Friston et al., 1991; Worsley et al., 19921. Gaussian 
fields are used to model the stationary spatial covari- 
ance structure typical of imaging data. Statistical 
inference is based on thresholding the SPM to create 
activation foci. This characterization of physiological 
responses is based on functional specialization, or segre- 
gation, as a principle of brain organization. In an 
attempt to assess the functional integration of special- 
ized areas, an alternative approach has been sug- 
gested [Friston et al., 1993,19941. This approach uses 
the eigenimages or principal components of imaging 
time-series: if functional connectivity is defined as the 
temporal correlation between remote neurophysiologi- 
cal events, then eigenimages are the eigenvectors of 
the functional connectivity matrix. Eigenimage analy- 
sis is predicated on similar approaches in the analysis 
of multichannel EEG [e.g., Friedrich et al., 19911, MEG 
[e.g., Fuchs et al., 19921, and multiunit electrode 
recordings [eg ,  Mayer-Kress et al., 19911. Although 
powerful, in a descriptive sense, eigenimage analysis 
and related approaches are not generally considered 
as ”statistical” methods that can be used to make 
statistical inferences; they are mathematical devices 
that simply identify prominent patterns of correla- 
tions or functional connectivity. It must be said, 
however, that large-sample, asymptotic, multivariate 
normal theory could be used to make some inferences 
about the relative contributions of each eigenimage 
(e.g., tests for nonsphericity) if a sufficient number of 
scans were available. 

In what follows, we observe that multivariate analy- 
sis of covariance (ManCova), with canonical variates 
analysis, combines many of the attractive features of 
statistical parametric mapping and eigenimage analy- 
sis. Unlike statistical parametric mapping, ManCova is 
multivariate. In other words, it considers one observa- 
tion as comprising all the voxels in a single scan. The 
importance of this multivariate approach is that the 

effects due to activations, confounding effects, and 
error effects are assessed both in terms of the effects at 
each voxel and interactions among voxels. This means 
one does not have to assume anything about spatial 
correlations (e.g., stationarity with Gaussian field mod- 
els) when assessing the sigruficance of the activation 
effect. Unlike statistical parametric mapping, these 
correlations are explicitly included in the analysis. The 
price one pays for adopting a multivariate approach is 
that one cannot make statistical inferences about 
regional changes (cf. statistical parametric mapping). 
This is because the inference pertains to all the 
components (voxels) of the multivariate variable (not a 
particular voxel or set of voxels). 

In general, multivariate analyses are implemented 
in two steps. First, the sigmficance of the hypothesized 
effect is assessed in terms of a P value, and secondly (if 
justified), the exact nature of the effect is determined. 
The analysis here conforms to this two-stage proce- 
dure: having assessed the brain’s response to be 
significant using ManCova, the nature of this response 
remains to be characterized. We propose that canoni- 
cal variate analysis (CVA) is an appropriate way to do 
this. The canonical images obtained with CVA are 
similar to eigenimages but are based on both the 
activation and the error effects. CVA is closely related 
to denoising techniques in EEG and MEG time-series 
analysis that use a generalized eigenvalue solution. 
Intuitively, these approaches can be understood as 
finding the eigenimages that ”point toward the activa- 
tion effects and away from the noise” [Anders Dale, 
personal communication]. Another way of looking at 
canonical images is to think of them as eigenimages 
that reflect functional connectivity due to activations, 
while discounting spurious correlations due to error. 

The paper is divided into two sections. The first 
section deals with the theory of ManCova and CVA. It 
presents the operational equations behind the multi- 
variate general linear model and statistical inferences 
about activation effects based on Wilk‘s lambda, and it 
characterizes the nature of these effects using CVA. 
CVA is then discussed in relation to eigenimage 
analysis as previously implemented in functional im- 
aging [Friston et al., 19931. The second section is an 
illustrative application to a standard PET activation 
study of word generation in normal subjects. The data 
are used to compare results with those obtained using 
eigenimage analysis. We reiterate that the procedures 
described in this paper can be found in any standard 
introductory test on multivariate statistics. We have 
used Chatfield and Collins [1980], but see also Mardia 
et al. [1979]. 
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THEORETICAL BACKGROUND identical. This can be seen by rearranging Eq (1) to 
give: 

(X*T-  X * ) .  u = u * A Dimension reduction and eigenimages 

The first step in multivariate analysis is to ensure 
that the dimensionality (number of components or 
voxels) of the data is smaller than the number of 
observations. Clearly for images this is not the case, 
because there are more voxels than scans; therefore, 
the data have to be transformed. The dimension 
reduction proposed here is straightforward and uses 
the scan-dependent expression of eigenimages or 
spatial modes as a reduced set of components for each 
multivariate observation (scan). The eigenimages and 
their associated expression, or eigenvectors, in time 
can be calculated in a number of ways. We use the 
standard eigenvalue solution in this paper (an alterna- 
tive would be singular value decomposition): 

[E A] = eig(X* - X*T) 

where: 

(X* * X*T). E = E A 

and 

Here X* is a large matrix of corrected voxel values with 
one column for each voxel and one row for each scan. 
"Corrected' implies mean correction and the removal 
of any confounds using linear regression. A is a 
diagonal matrix of eigenvalues, and E is a unitary 
orthonormal matrix of eigenvectors over time. The 
eigenimages or spatial modes constitute the columns 
of U, another unitary orthonormal matrix, and their 
expression over scans corresponds to the columns of 
the matrix X. X has one column for each eigenimage 
and one row for each scan. In our work we use only 
the J columns of X and U associated with eigenvalues 
greater than unity (after normalizing each eigenvalue 
by the average eigenvalue). We present the derivation 
of the eigenimages in this rather clumsy way because 
computationally it is much easier to compute the 
eigenvectors of X*.X*T than it is for XqT.X*, the latter 
being an exceedingly large matrix. The eigenimage 
decompositions based on these two products are 

Intuitively, X can be thought of as the original data 
X* "looked at" from a different direction or, more 
formally, rotated into the subspace of the J largest 
eigenimages. The elements of X are xij the activity of 
the jth eigenimage in scan i. 

General linear model and design matrix 

In matrix notation, the general linear model can be 
written as: 

X = G P + e  (2) 

The general linear model assumes the errors e are 
independent and identically distributed with the nor- 
mal distribution "(0, <)]. The matrix G is called the 
design matrix. The design matrix has one column for 
every effect (factor or covariate) in the model. p is the 
parameter matrix with one column vector fij of param- 
eters for each mode. The elements of G are explanatory 
variables relating to the conditions under which the 
observation (e.g., scan) was made. These coefficients 
can be 1) covariates (e.g., global cerebral blood flow, 
time, plasma prolactin level, etc.), in which case Eq. (2)  
is a familiar multivariate regression model, or (2) 
indicator-type variables, taking integer values to indi- 
cate the level of a factor (e.g., condition, subject, drug, 
etc.) under which the response variable was measured 
[Chatfield and Collins, 19801. In this case the model 
would correspond to a Manova. There is no mathemati- 
cal distinction between covariates and indicator-type 
variables, and if both are present the ensuing analysis 
would be called a ManCova. 

Least squares estimates of p, say b, are given by 

b = (GTG)-'GTX 

where 

E(bj) = pj and Var[bj] = cf(GTG)-' (3) 

Var{bi] is the variance-covariance matrix for the 
parameter estimates corresponding to the jth mode. 
These simple equations can be used to implement a 
vast range of statistical analyses. The design matrix 
can contain both covariates and indicator variables 
reflecting the experimental design. Each column of G 
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has an associated unknown parameter in the vectors 
pj. Some of these parameters will be of interest. The 
remaining parameters will be of no interest. This 
distinction suggests that G (and p) can be split into 
two partitions G = [H D] and similarly p = [aT yTIT 
with estimators b = [aT gTIT. Here, effects of interest 
are denoted by H and confounding effects of no 
interest by D. Eq. (2) can be expanded: 

where the sums of squares and products due to effects 
of interest are given by: 

T = (H - a)T . (H * a). (6). 

The error sum of squares and products under the 
null hypothesis R(&), i.e., after discounting the effects 
of interest (H), is given by: 

X = H . a + D y + e  (4) 

where H represents a matrix of 0s or Is depending on 
the level or presence of some interesting condition or 
treatment effect (e.g., the presence of particular cogni- 
tive component), or the columns of H might contain 
covariates of interest that could explain the observed 
variance in X (e.g., dose of apomorphine or "time on 
target"). D corresponds to a matrix of indicator vari- 
ables denoting effects that are not of any iqterest (e.g., 
of being a particular subject or block effect), or covari- 
ates of no interest (i.e., "nuisance variables" such as 
global activity or confounding time effects). To make 
this general formulation clear, consider the model for 
an unpaired t-test. In this instance the elements of the 
column vector G are - 1 for all rCBF measurements in 
one group and 1 for the other group. A simple 
regression of reaction time on rCBF would be imple- 
mented by making G a column vector containing the 
reaction time data. The randomized block design 
ANCOVA implemented by the SPM95 software corre- 
sponds to G = [H D, D,] where H specifies the 
activation condition, the D, account for subject (block) 
effects, and D, is a column vector of confounding 
global CBF covariates. The point to be made here is 
that nearly every conventional statistical design can be 
modelled as a special case of Eq. (4). 

Statistical inference 

In this section, we address statistical inference about 
the effects of interest (condition and covariates of 
interest). Sigruficance is assessed by testing the null 
hypothesis that the effects of interest do not signifi- 
cantly reduce the error variance when compared to 
the remaining effects alone (or alternatively, the null 
hypothesis that OL is zero). The null hypothesis can be 
tested in the following way. The sum of squares and 
products matrix (SSPM) due to error R(R) is obtained 
from the difference between the actual and estimated 
values of X: 

R = R(R) = (X - G * b)T(X - G * b) (5) 

R(&) = (X - D . g)T * (X - D * g). (7) 

Clearly if D does not exist this simply reduces to the 
sum of squares and products of the response variable 
(XTX = A). The significance can now be tested with: 

where A is Wilk's statistic (known as Wilk's lambda). A 
special case of this test is Hotelling's T2 test and applies 
when H simply compares one condition with another 
[see Chatfield and Collins, 19801. Under the null 
hypothesis, after transformation A has a x2 distribu- 
tion with degrees of freedom J.h. The transformation 
is given by: 

- (r - ((J - h + 1)/2)) * log (A) - x2(J * h) 

where r is the degrees of freedom associated with the 
error terms and is the number of scans (I) minus the 
number of effects modelled = I - rank(G). J is the 
number of eigenimages or modes in the J-variate 
response variable X, and h is the degrees of freedom 
associated with the effects of interest = rank(H). 

The potential weaknesses here include the facts that 
1) the x2 distribution is an approximation, and 2) even 
if the Gaussian assumptions of Eq. (2) hold for the 
error terms, any non-Gaussian components in the 
response variable that are not modelled in the design 
matrix may violate the distributional assumptions. 
There is no particular reason that PET data should be 
more susceptible to these weaknesses than any other 
data, but we mention them for completeness. 

Characterizing the effect 

Having established that the effects of interest are 
significant (eg ,  differences among two or more activa- 
tion conditions), the final step is to characterize these 
effects in terms of their spatial topography. This 
characterization uses canonical variates analysis (CVA). 
The objective is to find the linear combination (com- 
pound or contrast) of the components of X, in this case 
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the spatial modes or eigenimages, that best express the 
activation effects when compared to error effects. 
More exactly, we want to fmd c1 such that the variance 
ratio: 

is maximized [Chatfield and Collins, 19801. Let Z1 = 
X.cl where Z1 is the first canonical variate and c1 is a 
canonical image (defined in the space of the spatial 
modes) that maximizes this ratio. c2 is the second 
canonical image that maximizes the ratio subject to the 
constraints that the Cov{cl c2] = 0 (and so on). The 
matrix of canonical images c = [cl c2. .  . cJ] is given by 
solution of the generalized eigenvalue problem: 

T . c = R - c * O  (10) 

where 0 is a diagonal matrix of eigenvalues. Voxel- 
space canonical images C are obtained by rotating the 
canonical image in the columns of c back into voxel- 
space with the original eigenimages U: 

The columns of C now contain the voxel values of the 
canonical images. The kth column of C (the kth 
canonical image) has an associated canonical value 
equal to kth leading diagonal element of 0 times r/h. 
Note that the “activation” effect is a multivariate one, 
with J components or canonical images. Normally 
only a few of these components have large canonical 
values, and only these need be reported. An idea of 
whether a particular canonicaI image is important can 
be assessed with its canonical value. As noted above, 
the canonical value corresponds to a variance ratio 
and can be compared to F,(h, r). If the canonical value 
exceeds a critical threshold [e.g., Fo,o5(h, r)] it might be 
taken seriously. However F(h, r). is not a distributional 
approximation for the canonical values (these values 
have been chosen to maximize the variance ratio). 
Statistical inference is based on Wilk‘s lambda and 
pertains to all the canonical images. There are proce- 
dures based on distributional approximations of 0 
that do allow inferences about the dimensionality of 
the response (number of canonical images). We refer 
the interested reader to Chatfield and Collins [1980] 
for further details. 

Relationship to eigenimage analysis 

In Friston et al. [1993] we proposed that the eigen- 
vectors of the covariance matrix based on the adjusted 

condition means following an ANCOVA were a useful 
characterization of the functional interactions ob- 
served in an activation study. “Adjusted condition 
means” refer to the means for each condition after 
confounds, such as subject effects, have been re- 
moved. When the design matrix partition H models 
only these conditions, the adjusted condition means 
are the same as the parameter estimates in the matrix a 
above (expressed in terms of the spatial modes U). The 
eigenvectors of the covariance of the adjusted condi- 
tion means correspond to the eigenvectors of aT.a. aT.a 
is directly proportional to T = aT.W.H.a (W.H is 
proportional to the identity matrix by orthogonality of 
the experimental design). Therefore, the eigenimages 
in Friston et al. [1993] correspond to the eigenvectors 
of T. These have an interesting relationship to the 
canonical images: On rearranging Eq. (lo), i.e.: 

we note that the canonical images are the eigenvectors 
of R-l.T. In other words, an eigenimage analysis of an 
activation study (as proposed in Friston et al. [1993]) 
returns the eigenvectors that express the most vari- 
ance due to the effects of interest - eig(T). A canonical 
image, on the other hand, expresses the greatest 
amount of variance due to the effects of interest 
relative to error - eig(R-l.T). In this sense, a CVA can be 
considered an eigenimage analysis that is “informed’ 
by the estimates of the error effects. 

AN ILLUSTRATIVE APPLICATION 

In this section, we consider an application of the 
above theory to a word generation study in normal 
subjects. We will use this illustrative example to 
comment further on the various implementations of 
the multivariate approach and the interpretation of 
canonical images. 

The data 

The data were obtained from 5 subjects scanned 12 
times (every 8 min) while performing one of two 
verbal tasks. Scans were obtained with a CTI PET 
camera (model 953B, CTI, Knoxville, TN) [Spinks et al., 
19921. 150 was administered intravenously as radiola- 
belled water infused over 2 min. Total counts per 
voxel during the buildup phase of radioactivity served 
as an estimate of regional cerebral blood flow (rCBF). 
Subjects performed two tasks in alternation. One task 
involved repeating a letter presented aurally at one 
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per 2 sec (word shadowing). The other was a paced 
verbal fluency task, where subjects responded with a 
word that began with the letter presented (intrinsic 
word generation). To facilitate intersubject pooling, the 
data were realigned and stereotactically normalized 
[Friston et al., 19951. Intracranial voxels were selected 
(using an arbitrary threshold criterion), and mean- 
corrected and adjusted for subject, time, and global 
activity using linear regression, as described in Friston 
et al. [1995]). These data constitute the data matrix X*. 

ManCova 

We assessed the significance of condition-depen- 
dent effects by treating each of the 12 scans as a 
different condition. Note that we do not consider the 
six word-generation (or word-shadowing) conditions 
as replications of the same condition. In other words, 
the first time one performs a word-generation task is a 
different condition from the second time, and so on. 
The (alternative) hypothesis adopted here states that 
there is a significant difference among any of the 12 
conditions but does not constrain the nature of this 
difference to a particular form. The most important 
differences will emerge from the CVA. Clearly one 
might hope that these differences will be due to word 
generation, but they might not be. This hypothesis 
should be compared with a more constrained hypoth- 
esis that considers the conditions as six replications of 
word shadowing and word generation. This hypoth- 
esis is more directed and explicitly compares word 
shadowing with word generation. This comparison 
could be tested in a single subject. The point being 
made here is that the generality afforded by the 
current framework allows one to test very constrained 
(i.e., specific) hypotheses or rather general hypotheses 
about some unspecified activation effect. We choose 
the latter here because it places more emphasis on the 
canonical images as descriptions of what has actually 
occurred during the experiment. 

The design matrix partition for effects of interest H 
had 12 columns representing the 12 different condi- 
tions. We designated subject effects, time, and global 
activity as uninteresting confounds. The partition D of 
the design matrix therefore had four columns for each 
subject (subject effects were constrained to zero, es- 
chewing the need to incorporate the fifth subject- 
effect explicitly), five columns for time effects in each 
subject, and one column of global activities (even if 
these confounds have already been removed in a 
preprocessing step, it is important to use them again 
here because fitting confounds alone, and fitting them 
as part of a complete model, will give different 

Design matrix Canonical speetrum 

5 :3 15 2c -0 5 10 ‘ 5  
eyec! Canonical varkte 

Figure 1. 
Lek Design matrix used in demonstration analysis. Design matrix 
G models 22 effects. The 12 condition effects are at left. and 10 
confounds are at right). These confounds include subject effects, 
time, and global activity. Matrix is displayed in image format, with 
each column scaled to its absolute maximum. Design matrix shows 
that 60 scans are ordered as I2  conditions from subject I ,  followed 
by 12 conditions from subject 2, and so on to subject 5. Right: 
Spectrum of canonical values following a canonical variates analysis 
of the sums of squares and product matrices due to condition and 
error terms. Black bars represent canonical values that exceed 
Fo.os(h* r). 

estimates). The complete design matrix is seen in 
Figure 1 (left) and is displayed in image format. The 
condition effects are seen in the left part of the design 
matrix, and the confounds on the right. 

The corrected data were reduced to 60 eigenvectors, 
as described in Theoretical Background. The first 14 
eigenvectors had eigenvalues greater than unity and 
were used in the subsequent analysis. The resulting 
matrix X, with 60 rows (one for each scan) and 14 
columns (one for each eigenimage), was subject to 
ManCova. The significance of the condition effects 
was assessed with Wilk’s Lambda. According to Eq. 
(8), the P value for the condition or activation effects 
was P = 0.02. In other words, the probability of no 
differences among the 12 conditions was 0.02. 

Canonical variates analysis 

The condition effects were almost completely ac- 
counted for by two canonical images. In other words, 
two canonical values were substantially larger than 
Fo.05(h, r) = Fo.os(ll, 37) = 2.4. The spectrum of canoni- 
cal values is seen on the right in Figure 1. The first 
canonical image and its expression in each condition 
are shown in Figure 2. Upper panels show this system 
to include anterior cingulate and Broca’s area, with 
more moderate expression in the left posterior infero- 
temporal regions (right). The positive components of 
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this canonical image (left) implicate the ventromedial 
prefrontal cortex and the bitemporal regions (right 
greater than left). One important aspect of these 
canonical images is their: highly distributed yet struc- 
tured nature, reflecting the distributed integration of 
many brain areas. 

The canonical variate expressed in terms of mean 
condition effects is seen below in Figure 2. This variate 
is simply axl. It is pleasing to note that the first 
canonical variate corresponds to the difference be- 
tween word shadowing and verbal fluency. The corre- 
sponding canonical image is clearly implicated in the 
difference between the activation conditions (odd) 
and baseline (even) and is consistent with the known 
functional anatomy of verbal fluency. 

The canonical variate expressed over scans is shown 
in Figure 3 and is given by Z1 = X.cl = X'.C. For 
convenience, the expression of Z1 is shaded to high- 
light scans from the different subjects. Z1 is, almost 
universally, high negative in word generation and 
high positive in word shadowing. There are substan- 
tial differences in the expression of this canonical 
image over time within each subject, reflecting idiosyn- 
cratic time-dependent changes in activation. 

Comparison with eigenimage analysis 

The first eigenimage of the condition sum of squares 
and products matrix T is shown in Figure 4 (after 
rotation back into voxel-space), and corresponds to 
the eigenimage analysis described in Friston et al. 
[1993]. This eigenimage reflects the main patterns of 
correlations evoked by the mean condition effects and 
should be compared with the first canoni.ca1 image in 
Figure 2. The eigenimage in the current figure again 
implicates the anterior cingulate, Broca's area, the left 
posterior inferotemporal regions, and the bitemporal 
regions. In addition, another area has appeared, i.e., 
the posterior cingulate. In some ways the eigenimage 
is more compelling than the canonical image, but the 
differences between these characterizations of activa- 
tion effects are informative. The eigenimage is totally 
insensitive to the reliability or error attributable to 
differential activation from subject to subject, whereas 
the canonical image does reflect these variations. For 
example, the absence of the posterior cingulate in the 
canonical image and its relative prominence in the 
eigenimage suggest that this region is implicated in 
some subjects but not in others. The subjects that 
engage the posterior cingulate must do so to some 
considerable degree because the average effects (repre- 
sented by the eigenimage) are quite substantial. Con- 
versely, the medial prefrontal cortical deactivations 

are a much more generic feature of activation effects 
than would have been inferred on the basis of the 
eigenimage alone. These observations beg the ques- 
tion, "Which is the best characterization of functional 
anatomy?' Obviously there is no simple answer, but 
the question speaks to an important point: the canoni- 
cal image characterizes the response reZative to error, by 
partitioning the observed variance (in the J larger 
spatial modes) into effects we are interested in and a 
residual variation about these effects (error). This 
partitioning is determined by the experimental design 
and the inferences that are sought. The eigenimage 
does not embody any concept of error and is not 
constrained by any hypothesis. 

Error terms 

Figure 5 shows the first eigenimage of the sum of 
squares and products due to error R. The topography 
of this eigenimage is highly structured and appears to 
reflect a reciprocal relationship between the cortical 
envelope and the brain's interior. It is also interesting 
to note that the striate cortex and right temporoinsular 
regions are heavily implicated, suggesting that variabil- 
ity in these regions is high and strongly coupled. With 
the current model the error terms can be thought of as 
interactions between condition and subject effects, in 
other words, as the subject-to-subject differences in 
condition-dependent responses. This being the case, 
one might conjecture that the error terms will embody 
those condition effects that are expressed more in 
some subjects than in others. The expression of this 
error eigenimage concurs with this conjecture. The 
lower panel shows the expression of the first eigenim- 
age of R in the same format as in Figure 3. It can be 
seen that subjects 3 and 4 express this mode during 
word generation, whereas the remaining subjects do 
not. The expression in subject 5 suggests a highly 
nonlinear time effect. This sort of effect illustrates the 
potential for nowGaussian components in the error 
terms and, if very prevalent, should be noted as a 
violation of the distributional assumptions implicit in 
the general linear model. Alternatively they could, of 
course, be appropriately modelled in the design ma- 
trix. 

DISCUSSION 

In this paper we have presented a general multivar- 
iate approach to the analysis of functional imaging 
studies. This analysis uses standard multivariate tech- 
niques to make statistical inferences about activation 
effects and to describe the important features of these 
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Figure 2. 

Top: First canonical image, displayed as maximum intensity projections of positive and negative components. Display format is standard 
and provides three views of the brain from front, back, and right side. Grayscale is arbitrary, and the space conforms to that described in 
Talairach and Tournoux [ 19881. Bottom: Expression of first canonical image (i.e., the canonical variate) averaged over conditions. Odd 
conditions correspond to word shadowing, and even conditions correspond to word geneation. This canonical variate is clearly sensitive 
to the differences evoked by these two tasks. 
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Figure 3. 
Canonical m a t e  ZI expressed over all conditions, in all subjects. 
The scans are ordered as in Figure 2, but for each subject in turn. 
Scans from different subjects are alternately grey and black. It can 
be seen that the relationship of this canonical variate to word 
genetation is largely preserved from subject to subject. 

effects. More specifically, the proposed analysis uses 
multivariate analysis of covariance ManCova with 
Wilk's lambda to test for specific effects of interest 
(e.g., differences among activation conditions) and 
canonical variates analysis (CVA) to characterize these 
distributed responses. These established methods are 
applied to the data after they have been transformed 
using the underlying principal components or eigen- 
images. After the significance of the activation effect 
has been assessed, the underlying distributed changes 
are described in terms of canonical images. The analy- 
sis can be summarized in terms of the following stages: 

Reduce the dimensionality of the data (equal to 
number of voxels) by rotating the data into the 
eigenimage space (with a dimensionality that is 
less than the number of scans). 
Assess the significance of interesting (e.g., activa- 
tion) effects using an appropriately configured 
design matrix, ManCova, and WWs lambda. 
Characterize these effects using a canonical vari- 
ates analysis in terms of canonical vectors that best 
capture the activation effects, relative to error. 
Rotate the canonical vectors back into voxel- 
space. The expression of the resulting canonical 
images is given by the canonical variates. 

The generality of this approach is assured by the 
generality of the linear model used. The design and 
inferences sought are embodied in the design matrix 
and can, in principle, accommodate most parametric 
statistical analyses. 

This multivariate approach differs fundamentally 
from statistical parametric mapping and related ap- 
proaches, because the concept of a separate voxel or 
region of interest ceases to have meaning. One scan 
represents one observation (not 105 voxels). In this 
sense, the statistical inference is about the whole 
image volume, and not any component of it. This 
precludes statistical inferences about regional effects 
that are made without reference to changes elsewhere 
in the brain. This fundamental difference ensures that 
SPM and multivariate approaches are likely to be 
regarded as distinct and complementary approaches 
to functional imaging data. 

The CVA component proposed in this paper is 
conceptually similar to eigenimage analysis, but can 
be considered a true "statistical" procedure. The rea- 
son that CVA is considered "statistical" is that the 
underlying mathematical model includes error terms. 
Canonical images can be thought of as denoised 
eigenimages that are informed by (and attempt to 
discount) error. Because canonical images are single 
(multivariate) objects, there are no thresholds. This 
may present something of a challenge to those who 
are used to working with thresholded SPMs and the 
discrete foci that ensue. Clearly, like eigenimages and 
subprofiles from SSM, canonical images should be 
reported and described in their entirety as single 
distributed profiles. The verbal description of a canoni- 
cal image will be more anecdotal than the correspond- 
ing point-list summaries of SPM maxima. However, 
the canonical image itself is as valid as an SPM as a 
description of a significant effect (some might say 
more so, given that it is not subject to an arbitrary 
threshold). 

Applications 

There are many potential applications of the analy- 
sis presented in this paper. One particularly interest- 
ing application concerns the ability to test various 
models in a comprehensive and direct fashion. Hith- 
erto there has been no "omnibus" test for a particular 
neurophysiological response or model of this re- 
sponse that did not rely on some assumptions about 
the multivariate structure of the data (e.g., Gaussian 
fields). Wilk's statistic could provide this test. For 
example, the controversy over the appropriate model 
for removing the confounding effects of global activity 
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Figure 4. 
First eigenimage of the sums of squares and products of the condition effect T. Display format is the 
same as in Figure 2. The expression of this mode is displayed below, and concurs with the expression 
of the first canonical image. 
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Figure 5. 
First eigenimage of the sums of squares and products of the error effect R. Display format is the same 
as in Figure 4, but the expression of this eigenimage (below) is shown over all 60 scans, using the 
format of Figure 3. 
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on regional effects has been dogged by the lack of any 
compelling comparative assessment of different mod- 
els. Wilk’s statistic could, in principle, be used to 
resolve this issue by explicitly testing hierarchies of 
models (a succession of extra effects modelled in the 
design matrix). 

An attractive neuroscience application of the multi- 
variate approach considered here pertains to the 
significance of interaction terms in the design matrix. 
Cognitive subtraction is based on the assumption that 
extra components of a task can be inserted without 
affecting the preexisting components. One of the main 
concerns with cognitive subtraction and additive fac- 
tors logic can be reduced to the relationship between 
neural dynamics and cognitive processes. For ex- 
ample, even if a cognitive component can be added 
without interacting with preexisting components, the 
brain’s implementation is almost certainly going to 
show profound interactions. This follows from the 
observation that neural dynamics are nonlinear. In- 
deed, nearly all theoretical and computational neuro- 
biology is based on this. In order to verify the assump- 
tions behind cognitive subtraction, one needs to 
demonstrate that these interactions can be ignored 
when modelling the brain’s response. This can be 
effected simply and rigorously using Wilk’s statistic to 
show that the interaction terms in the design matrix 
are not significant (here one would treat the interac- 
tion terms as effects of interest and the remaining 
effects as of no interest). Of course, if the interactions 
were sigruficant this would lead to a richer understand- 
ing of functional anatomy and to a basis for more 
sophisticated experimental designs. 

CONCLUSIONS 

We have presented a simple multivariate analytic 
approach to functional imaging data. This multivari- 
ate analysis may provide a statistical approach to PET 
activation studies that 1) complements univariate 
approaches like statistical parametric mapping, and 2) 
may facilitate the extension of existing multivariate 
techniques to include hypothesis-testing and statisti- 
cal inference. 
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