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This paper concerns temporal filtering in fMRI time-
series analysis. Whitening serially correlated data is
the most efficient approach to parameter estimation.
However, if there is a discrepancy between the as-
sumed and the actual correlations, whitening can ren-
der the analysis exquisitely sensitive to bias when es-
timating the standard error of the ensuing parameter
estimates. This bias, although not expressed in terms
of the estimated responses, has profound effects on
any statistic used for inference. The special con-
straints of fMRI analysis ensure that there will always
be a misspecification of the assumed serial correla-
tions. One resolution of this problem is to filter the
data to minimize bias, while maintaining a reasonable
degree of efficiency. In this paper we present expres-
sions for efficiency (of parameter estimation) and bias
(in estimating standard error) in terms of assumed
and actual correlation structures in the context of the
general linear model. We show that: (i) Whitening
strategies can result in profound bias and are there-
fore probably precluded in parametric fMRI data anal-
yses. (ii) Band-pass filtering, and implicitly smoothing,
has an important role in protecting against inferential
bias. © 2000 Academic Press

Key Words: functional neuroimaging; fMRI; bias; ef-
ciency; filtering; convolution; inference.

INTRODUCTION

This paper is about serial correlations in fMRI time
series and their impact upon the estimations of, and
inferences about, evoked hemodynamic responses. In
Friston et al. (1994), we introduced the statistical com-

lications that arise, in the context of the general lin-
ar model (or linear time invariant systems), due to
emporal autocorrelations or “smoothness” in fMRI
ime series. Since that time a number of approaches to
hese intrinsic serial correlations have been proposed
nd our own approach has changed substantially over
he years. In this paper we describe briefly the sources
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Copyright © 2000 by Academic Press
All rights of reproduction in any form reserved.
of correlations in fMRI error terms and consider differ-
ent ways of dealing with them. In particular we con-
sider the importance of filtering the data to condition
the correlation structure despite the fact that removing
correlations (i.e., whitening) would be more efficient.
These issues are becoming increasingly important with
the advent of event-related fMRI that typically evokes
responses in the higher frequency range (Paradis et al.,
1998).

This paper is divided into three sections. The first
describes the nature of, and background to, serial cor-
relations in fMRI and the strategies that have been
adopted to accommodate them. The second section
comments briefly on the implications for optimum ex-
perimental design and the third section deals, in
greater depth, with temporal filtering strategies and
their impact on efficiency and robustness. In this sec-
tion we deal first with efficiency and bias for a single
serially correlated time series and then consider the
implications of spatially varying serial correlations
over voxels.

SERIAL CORRELATIONS IN fMRI

fMRI time series can be viewed as a linear admixture
of signal and noise. Signal corresponds to neuronally
mediated hemodynamic changes that can be modeled
as a linear (Friston et al., 1994) or nonlinear (Friston et
al., 1998) convolution of some underlying neuronal pro-
cess, responding to changes in experimental factors.
fMRI noise has many components that render it rather
complicated in relation to other neurophysiological
measurements. These include neuronal and nonneuro-
nal sources. Neuronal noise refers to neurogenic signal
not modeled by the explanatory variables and occupies
the same part of the frequency spectrum as the hemo-
dynamic signal itself. These noise components may be
unrelated to the experimental design or reflect varia-
tions about evoked responses that are inadequately
modeled in the design matrix. Nonneuronal compo-
nents can have a physiological (e.g., Meyer’s waves) or



t

s
d
n
m
f

e
f
r
0
e
t
m
w
s
f
t
a
I
t
c
s
r

197fMRI TIME-SERIES ANALYSIS
nonphysiological origin and comprise both white [e.g.,
thermal (Johnston) noise] and colored components
[e.g., pulsatile motion of the brain caused by cardiac
cycles or local modulation of the static magnetic field
(B0) by respiratory movement]. These effects are typi-
cally low frequency (Holmes et al., 1997) or wide band
(e.g., aliased cardiac-locked pulsatile motion). The su-
perposition of these colored components creates serial
correlations among the error terms in the statistical
model (denoted by Vi below) that can have a severe
effect on sensitivity when trying to detect experimental
effects. Sensitivity depends upon (i) the relative
amounts of signal and noise and (ii) the efficiency of the
experimental design and analysis. Sensitivity also de-
pends on the choice of the estimator (e.g., linear least
squares vs Gauss–Markov) as well as the validity of
the assumptions regarding the distribution of the er-
rors (e.g., the Gauss–Markov estimator is the maxi-
mum likelihood estimator only if the errors are multi-
variate Gaussian as assumed in this paper).

There are three important considerations that arise
from this signal processing perspective on fMRI time
series: The first pertains to optimum experimental de-
sign, the second to optimum filtering of the time series
to obtain the most efficient parameter estimates, and
the third to the robustness of the statistical inferences
about the parameter estimates that ensue. In what
follows we will show that the conditions for both high
efficiency and robustness imply a variance–bias trade-
off that can be controlled by temporal filtering. The
particular variance and bias considered in this paper
pertain to the variance of the parameter estimates and
the bias in estimators of this variance.

The Background to Serial Correlations

Serial correlations were considered initially from the
point of view of statistical inference. It was suggested
that instead of using the number of scans as the de-
grees of freedom for any statistical analysis, the effec-
tive degrees of freedom should be used (Friston et al.,
1994). The effective degrees of freedom were based
upon some estimate of the serial correlations and en-
tered into the statistic so that its distribution under
the null hypothesis conformed more closely to that
expected under parametric assumptions. The primary
concern at this stage was the validity of the inferences
that obtained. This heuristic approach was subse-
quently corrected and refined, culminating in the
framework described in Worsley and Friston (1995). In
Worsley and Friston (1995) a general linear model was
described that accommodated serial correlations, in
terms of both parameter estimation and inference us-
ing the associated statistics. In order to avoid estimat-
ing the intrinsic serial correlations, the data were con-
volved with a Gaussian smoothing kernel to impose an

approximately known correlation structure. The criti- a
cal consideration at this stage was robustness in the
face of errors in estimating the correlations. Bullmore
et al. (1996) then proposed an alternative approach,
whereby the estimated temporal autocorrelation struc-
ture was used to prewhiten the data, prior to fitting a
general linear model with assumed identical and inde-
pendently distributed error terms. This proposal was
motivated by considerations of efficiency. Validity and
robustness were ensured in the special case of the
analysis proposed by Bullmore et al. (1996) because
hey used randomization strategies for inference.1

Variations on an autoregressive characterization of se-
rial correlations then appeared. For example Locascio
et al. (1997) used autoregressive moving average
(ARMA) models on a voxel-by-voxel basis. Purdon and
Weisskoff (1998) suggested the use of an AR(1) plus
white noise model. In the past years a number of em-
pirical characterizations of the noise have been de-
scribed. Among the more compelling is a modified 1/f
characterization2 of Aguirre et al. (1997) and Zarahn et
al. (1997) (see Appendix A for a more formal descrip-
tion of autoregressive and modified 1/f models). In
hort, there have emerged a number of apparently
isparate approaches to dealing with, and modeling,
oise in fMRI time series. Which of these approaches or
odels is best? The answer to this question can be

ramed in terms of efficiency and robustness.

Validity, Efficiency, and Robustness

Validity refers to the validity of the statistical infer-
nce or the accuracy of the P values that are obtained
rom an analysis. A test is valid if the false-positive
ate is less than the nominal specificity (usually a 5
.05). An exact test has a false-positive rate that is
qual to the specificity. The efficiency of a test relates
o the estimation of the parameters of the statistical
odel employed. This estimation is more efficient
hen the variability of the estimated parameters is

maller. A test that remains valid for a given departure
rom an assumption is said to be robust to violation of
hat assumption. If a test becomes invalid, when the
ssumptions no longer hold, then it is not a robust test.
n general, considerations of efficiency are subordinate
o ensuring that the test is valid under the normal
ircumstances of its use. If these circumstances incur
ome deviation from the assumptions behind the test,
obustness becomes the primary concern.

1 There is an argument that the permutation of scans implicit in
the randomization procedure is invalid if serial correlations persist
after whitening: Strictly speaking the scans are not interchangeable.
The strategy adopted by Bullmore et al. (1996) further assumes the
same error variance for every voxel. This greatly reduces computa-
tional load but is not an assumption that everyone accepts in fMRI.

2 This class of model should not be confused with conventional 1/f
processes with fractal scaling properties, which are 1/f in power. The
models referred to as “modified 1/f models” in this paper are 1/f in

mplitude.
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198 FRISTON ET AL.
OPTIMUM EXPERIMENTAL DESIGN

Any linear time invariant model (e.g., Friston et al.,
1994; Boynton et al., 1996) of neuronally mediated
ignals in fMRI suggests that only those experimental
ffects whose frequency structure survives convolution
ith the hemodynamic response function (HRF) can be
stimated with any efficiency. Experimental variance
hould therefore be elicited with reference to the trans-
er function of the HRF. The corresponding frequency
rofile of a canonical transfer function is shown in Fig.
(right). It is clear that frequencies around 1/32 Hz
ill be preserved, following convolution, relative to
ther frequencies. This frequency characterizes peri-
dic designs with 32-s periods (i.e., 16-s epochs). Gen-
rally the first objective of experimental design is to
omply with the natural constraints imposed by the
RF and to ensure that experimental variance occu-
ies these intermediate frequencies.
Clearly there are other important constraints. An

mportant one here is the frequency structure of noise,
hich is much more prevalent at low frequencies (e.g.,
/64 Hz and lower). This suggests that the experimen-
al frequencies, which one can control by experimental
esign, should avoid these low-frequency ranges. Other
onstraints are purely experimental; for example, psy-
hological constraints motivate the use of event-related
esigns that evoke higher frequency signals (Paradis et

al., 1998) relative to equivalent block designs. Typical
regressors for an epoch- or block-related design and an
event-related design are shown in Fig. 2. The epoch-
related design is shown at the top and comprises a
box-car and its temporal derivative, convolved with a
canonical HRF (shown on the left in Fig. 1). An event-
related design, with the same number of trials pre-
sented in a stochastic fashion, is shown at the bottom.
Again the regressors correspond to an underlying set of
delta functions (“stick” function) and their temporal

FIG. 1. Left: A canonical hemodynamic response function (HRF).
The HRF in this instance comprises the sum of two gamma functions
modeling a peak at 6 s and a subsequent undershoot. Right: Spectral
density associated with the HRF expressed as a function of 1/fre-
quency or period length. This spectral density is ul(v)u2 where l(v) is
the HRF transfer function.
derivatives convolved with a canonical HRF. The
event-related design has more high-frequency compo-
nents and this renders it less efficient than the block
design from a statistical perspective (but more useful
from other perspectives). The regressors in Fig. 1 will
be used later to illustrate the role of temporal filtering.

TEMPORAL FILTERING

This section deals with temporal filtering and its
effect on efficiency and inferential bias. We start with
the general linear model and derive expressions for
efficiency and bias in terms of assumed and actual
correlations and some applied filter. The next subsec-
tion shows that the most efficient filtering scheme (a
minimum variance filter) introduces profound bias into
the estimates of standard error used to construct the
test statistic. This results in tests that are insensitive

FIG. 2. Regressors for an epoch-related or block design (top) and
an event-related design (bottom) with 128 scans and a TR of 1.7 s.
Both sets of regressors were constructed by convolving the appropri-
ate stimulus function (box-car for the block design and a stick func-
tion for the event-related design) and its temporal derivative with
the canonical HRF depicted in Fig. 1. These regressors have been
orthogonalized and Euclidean normalized.
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199fMRI TIME-SERIES ANALYSIS
or potentially invalid (i.e., not robust). The position
adopted in this paper is that, for fMRI data analysis, a
minimum variance filter is not appropriate. Instead we
would like to find a minimum bias filter. This is diffi-
cult because one needs to know how the serial correla-
tions that are likely to be encountered deviate from the
assumed form. The next subsection presents a way of
estimating the expected bias and efficiency, given the
probability distribution of the intrinsic correlations.
Using empirical estimates of this distribution it is
shown that suppressing both high and low frequencies
with band-pass filtering is required to minimize bias.
The expected values for bias and efficiency are then
used to compare three filtering strategies, (i) whiten-
ing, (ii) high-pass, and (iii) band-pass (i.e., high pass
with smoothing) filtering, under different models of the
correlations. In brief it will be shown that supplement-
ing high-pass filtering with smoothing has an impor-
tant role in reducing bias whatever model is assumed.
This section concludes by noting that minimizing bias
over a range of deviations from the assumed form for
the correlations also renders bias less sensitive to spa-
tial variations in serial correlations from voxel to voxel.

Efficiency and Bias

Here we provide expressions for the efficiency and
bias for any experimental design, embodied in the ex-
planatory variables or regressors that comprise the
design matrix X and any contrast or compound of pa-
rameter estimates specified with a vector of contrast
weights. Consider the general linear model

Sy 5 SXb 1 SKiz, (1)

where y is a (n 3 1) response variable (measured fMRI
ignal at any voxel) and S is an extrinsic or applied
emporal filter matrix. If S has a Toeplitz form then it
an be considered as an applied (de)convolution. How-
ver, generally S can take any form. A distinction is
ade between the true intrinsic correlations and those

ssumed. These correlations are characterized by the
n 3 n) convolution matrices Ki and Ka, respectively,
ith an ensuing noise process Kiz where z is an inde-

pendent innovation ;N(0, s2I).
The corresponding autocorrelation matrices are Vi 5

KiKi
T and Va 5 KaKa

T. The general least-squares esti-
ator of the parameters is

b̂GLS 5 ~X TS TSX! 21~SX! TSy 5 ~SX! 1Sy, (2)

where 1 denotes the pseudoinverse. The efficiency of
estimating a particular contrast of parameters is in-
versely proportional to the contrast variance,

T ˆ 2 T 1 T 1T
var$c bGLS% 5 s c ~SX! SViS ~SX! c, (3)
where c is a vector of contrast weights. One might
simply proceed by choosing S to maximize efficiency or,
equivalently, minimize contrast variance (see “Mini-
mum Variance Filters”). However, there is another
important consideration here: any statistic used to
make an inference about the significance of the con-
trast is a function of that contrast and an estimate of its
variance. This second estimate depends upon an esti-
mate of s2 and an estimate of the intrinsic correlations
Vi (i.e., Va). The estimator of the contrast variance will
be subject to bias if there is a mismatch between the
assumed and the actual correlations. Such bias would
invalidate the use of theoretical distributions, of test
statistics derived from the contrast, used to control
false-positive rates.

Bias can be expressed in terms of the proportional
difference between the true contrast variance and the
expectation of its estimator (see Appendix B for de-
tails),

Bias$S, Vi%

5 1 2
trace$RSViS T%c T~SX! 1SVaS T~SX! 1Tc

trace$RSVaS T%c T~SX! 1SViS T~SX! 1Tc
,

(4)

where R 5 I 2 SX(SX)1 is a residual-forming matrix.
When bias is less than zero the estimated standard
error is too small and the ensuing T or F statistic will
be too large, leading to capricious inferences (i.e., false
positives). When bias is greater than zero the inference
will be too conservative (but still valid). In short if Ki Þ

a then bias will depend on S. If Ki 5 Ka then bias 5
but efficiency still depends upon S.

Minimum Variance Filters

Conventional signal processing approaches and esti-
ation theory dictate that whitening the data engen-

ers the most efficient parameter estimation. This cor-
esponds to filtering with a convolution matrix S that

is the inverse of the intrinsic convolution matrix Ki

(where Ki 5 Vi
1/2). The resulting parameter estimates

are optimally efficient among all linear, unbiased esti-
mators and correspond to the maximum likelihood es-
timators under Gaussian assumptions. More formally,
the general least-squares estimators b̂GLS are then
equivalent to the Gauss–Markov or linear minimum
variance estimators b̂GM (Lawson and Hanson, 1974).

In order to whiten the data one needs to know, or
estimate, the intrinsic correlation structure. This re-
duces to finding an appropriate model for the autocor-
relation function or spectral density of the error terms
and then estimating the parameters of that model.
Clearly one can never know the true structure but we
can compare different models to characterize their rel-
ative strengths and weaknesses. In this paper we will

take a high-order (16) autoregressive model as the
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“gold standard” and evaluate simpler, but commonly
used, models in relation to it. In other words we will
consider the AR(16) model as an approximation to the
true underlying correlations. The problem of estimat-
ing serial correlations is highlighted in Fig. 3. Here the
residuals from a long (512-scan, TR 5 1.7 s) time series
were used to estimate the spectral density and associ-

FIG. 3. Spectral densities (top) and corresponding autocorrela-
ion functions (bottom) for the residual terms of a fMRI time series
veraged over 512 voxels. Three cases are shown: (i) An AR(16)
odel estimated using the Yule–Walker method (this is taken to be
good approximation to the true correlations). The “bump” in the

pectrum at around 1/32 Hz may reflect harmonics of random vari-
tions in trial-to-trial responses (every 16 s). (ii) An AR(1) model
stimate using the same method. (iii) For a model of the form (q1/f 1

q2) where f is frequency in Hz. These data came from a single-subject,
event-related, single-word-presentation fMRI study acquired with
multislice EPI at 2 T with a TR of 1.7 s. The words were presented
every 16 s. The data were globally normalized, and fitted event-
related responses (Josephs et al., 1997) were removed. The 512
voxels were selected on the basis of a nontrivial response to acoustic
stimulation, based on the F ratio in a conventional SPM analysis
(P , 0.001 uncorrected). This ensured that the ensuing gray-matter
voxels represented a fairly homogeneous population in terms of their
functional specialization.
ated autocorrelation functions (where one is the
Fourier transform of the other) using the Yule–Walker
method with an autoregression order of 16 (see Appen-
dix A). The data came from a single-subject event-
related study using sparse single-word presentations
every 16 s. Evoked responses were removed following
global normalization. Estimates of the autocorrelation
functions and spectral densities using a commonly as-
sumed AR(1) model (Bullmore et al., 1996) and a mod-
ified 1/f model (Zarahn et al., 1997) are also shown. The
AR(1) is inadequate in that it fails to model either
long-range (i.e., low frequencies) or intermediate cor-
relations. The modified 1/f model shown here is a good
approximation for the short-range and intermediate
correlations but fails to model the long-range correla-
tions as well as it could. Any discrepancy between the
assumed and the actual correlation structure means
that, when the data are whitened in accord with the
assumed models, the standard error of the contrast is
biased. This leads directly to bias in the ensuing sta-
tistics. For example the T statistic is simply the quo-
tient of the contrast and its estimated standard error.
It should be noted that the simple models would fit
much better if drifts were first removed from the time
series. However, this drift removal corresponds to
high-pass filtering and we want to make the point that
filtering is essential for reducing the discrepancy be-
tween assumed and actual correlations (see below).

This bias is illustrated in Fig. 4 under a variety of
model-specific minimum-variance filters. Here the re-
gressors from the epoch- and event-related designs in
Fig. 2 were used as the design matrix X, to calculate
the contrast variance and bias in the estimate of this
variance according to Eq. (3) and Eq. (4), where

Vi 5 VAR(16),

Va 5 5Vi
VAR(1)
V1/f
1

, S 5 5
K i

21 “correct” model
KAR(1)

21 AR~1! model
K1/f

21 1/f model
1 “none”

.

The variances in Fig. 4 have been normalized by the
minimum variance possible (i.e., that of the “correct”
model). The biases are expressed in terms of the pro-
portion of variance incorrectly estimated. Obviously
the AR(16) model gives maximum efficiency and no
bias (bias 5 0) because we have used the AR(16) esti-
mates as an approximation to the actual correlations.
Any deviation from this “correct” form reduces effi-
ciency and inflates the contrast variance. Note that
misspecifying the form for the serial correlations has
inflated the contrast variance more for the event-re-
lated design (bottom) relative to the epoch-related de-
sign (top). This is because the regressors in the epoch-
related design correspond more closely to eigenvectors

of the intrinsic autocorrelation matrix (see Worsley
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and Friston, 1995). Generally if the regressors conform
to these eigenvectors then there is no loss of efficiency.

The bias incurred by mis-specification can be sub-
stantial, resulting in an over- [AR(1)] or under- (1/f and
“none”) estimation of the contrast variance leading, in
turn, to inexact tests using the associated T statistic
that are unduly insensitive [AR(1)] or invalid (1/f and
“none”). The effect is not trivial. For example the bias
engendered by assuming an AR(1) form in Fig. 4 is
about 24%. This would result in about a 10% reduction
of T values and could have profound effects on infer-
ence.

In summary the use of minimum variance, or maxi-
mum efficiency, filters can lead to invalid tests. This
suggests that the use of whitening is inappropriate and
the more important objective is to adopt filtering strat-
egies that minimize bias to ensure that the tests are
robust in the face of misspecified autocorrelation struc-
tures (i.e., their validity is retained). The minimum
bias approach is even more tenable given that sensi-

FIG. 4. Efficiencies and biases computed according to Eq. (3) and
Eq. (4) in the main text for the regressors in Fig. 2 and contrasts of
[1 0] and [0 1] for three models of intrinsic correlations [AR(16),
AR(1), and the modified 1/f models] and assuming they do not exist
(“none”). The results are for the Gauss–Markov estimators (i.e.,
using a whitening strategy based on the appropriate model in each
case) using the first model [AR(16)] as an approximation to the true
correlations. The contrast variances have been normalized to the
minimum attainable. The bias and increased contrast variance in-
duced result from adopting a whitening strategy when there is a
discrepancy between the actual and the assumed intrinsic correla-
tions.
tivity in fMRI is not generally a great concern. This is
because a large number of scans enter into the estima-
tion in fixed-effect analyses, and random-effects anal-
yses (with fewer degrees of freedom) do not have to
contend with serial correlations.

Minimum Bias Filters

There are two fundamental problems when trying to
model intrinsic correlations: (i) one generally does not
know the true intrinsic correlations and (ii) even if they
were known for any given voxel time series, adopting
the same assumptions for all voxels will lead to bias
and loss of efficiency because each voxel has a different
correlation structure (e.g., brain-stem voxels will be
subject to pulsatile effects, ventricular voxels will be
subject to CSF flow artifacts, white matter voxels will
not be subject to neurogenic noise). It should be noted
that very reasonable methods have been proposed for
local estimates of spatially varying noise (e.g., Lange
and Zeger, 1997). However, in this paper we assume
that computational, and other, constraints require us
to use the same statistical model for all voxels.

One solution to the “bias problem” is described in
Worsley and Friston (1995) and involves conditioning
the serial correlations by smoothing. This effectively
imposes a structure on the intrinsic correlations that
renders the difference between the assumed and the
actual correlations less severe. Although generally less
efficient, the ensuing inferences are less biased and
therefore more robust. The loss of efficiency can be
minimized by appropriate experimental design and
choosing a suitable filter S. In other words there are
certain forms of temporal filtering for which SViST '
SVaST even when Vi is not known [see Eq. (4)]. These
filters will minimize bias. The problem is to find a
suitable form for S.

One approach to designing a minimum bias filter is
to treat the intrinsic correlation Vi, not as an unknown
deterministic variable, but as a random variable,
whose distributional properties are known or can be
estimated. We can then choose a filter that minimizes
the expected square bias over all Vi,

SMB 5 min argS$j$S%%

j$S% 5 E bias$S, Vi%
2p~Vi!dVi.

(5)

Equation (5) says that the ideal filter would minimize
the expected or mean square bias over all intrinsic
correlation structures encountered. An expression for
mean square bias and the equivalent mean contrast
variance (i.e., 1/efficiency) is provided in Appendix C.
This expression uses the first and second order mo-
ments of the intrinsic autocorrelation function, param-

eterized in terms of the underlying autoregression co-
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efficients. More precisely, given the expected
coefficients and their covariances, a simple second-
order approximation to Eq. (5) obtains in terms of the
eigenvectors and eigenvalues of the AR coefficient co-
variance matrix. These characterize the principal vari-
ations about the expected autocorrelation function.
Empirical examples are shown in Fig. 5, based on the
variation over gray matter voxels in the data used in
Fig. 2. Here the principal variations, about the ex-
pected autocorrelation function (lower right), are pre-
sented (top) in terms of partial derivatives of the auto-
correlation function with respect to the autoregressive
eigenvectors (see Appendix C).

The expressions for mean square bias and mean
contrast variance will be used in the next subsection to
evaluate the behavior of three filtering schemes in
relation to each other and a number of different corre-
lation models. First however, we will use them to mo-

FIG. 5. Characterizing the variability in intrinsic correlations.
Top: The 16 partial derivatives of the autocorrelation function with
respect to the eigenvectors of the covariance matrix of the underlying
autoregression coefficients. These represent changes to the autocor-
relation function induced by the principal components of variation
inherent in the coefficients. The covariances were evaluated over the
voxels described in Fig. 2. Lower left: The associated eigenvalue
spectrum. Lower right: The autocorrelation function associated with
the mean of the autoregression coefficients. These characterizations
enter into Eq. (C.3) in Appendix C, to estimate the mean square bias
for a given filter.
tivate the use of band-pass filtering: Intuitively one
might posit band-pass filtering as a minimum bias
filter. In the limit of very narrow band-pass filtering
the spectral densities of the assumed and actual corre-
lations, after filtering, would be identical and bias
would be negligible. Clearly this would be inefficient
but suggests that some band-pass filter might be an
appropriate choice. Although there is no single univer-
sal minimum bias filter, in the sense it will depend on
the design matrix and contrasts employed and other
data acquisition parameters; one indication of which
frequencies can be usefully attenuated derives from
examining how bias depends on the upper and lower
cutoff frequencies of a band-pass filter.

Figure 6 shows the mean square bias and mean
contrast variance incurred by varying the upper and
lower band-pass frequencies. These results are based
on the epoch-related regressors in Fig. 2 and assume
that the intrinsic correlations conform to the AR(16)
estimate. This means that any bias is due to variation

FIG. 6. Top: Mean square bias (shown in image format in inset)
as a function of high- and low-pass cutoff frequencies defining a
band-pass filter. Darker areas correspond to lower bias. Note that
minimum bias attains when a substantial degree of smoothing or
low-pass filtering is used in conjunction with high-pass filtering
(dark area on the middle left). Bottom: As for the top but now
depicting efficiency. The gray scale is arbitrary.



h

c
a

203fMRI TIME-SERIES ANALYSIS
about that estimate and not due to specifying an inap-
propriately simple form for the correlations.3 The
ranges of upper and lower band-pass frequencies were
chosen to avoid encroaching on frequencies that con-
tain signal. This ensured that efficiency was not se-
verely compromised. The critical thing to note from
Fig. 6 is that the effects of low-pass and high-pass
filtering are not linearly separable. In other words
low-pass filtering or smoothing engenders minimum
bias but only in the context of high-pass filtering. It is
apparent that the minimum bias obtains with the
greatest degree of smoothing examined but only in
conjunction with high-pass filtering, at around 1/96 per
second. In short, band-pass filtering (as opposed to
high- or low-pass filtering on their own) minimizes bias
without a profound effect on efficiency. Interestingly,
in this example, although increasing the degree of
smoothing or low-pass filtering increases contrast vari-
ance (i.e., decreases efficiency), at high degrees of
smoothing the minimum variance high-pass filter is
very similar to the minimum bias filter (see Fig. 6).

These results used filter matrices that have a simple
form in frequency space but are computationally ex-
pensive to implement. Next we describe a band-pass
filter used in practice (e.g., in SPM99) and for the
remainder of this paper.

Computationally Efficient Band-Pass Filters

The filter S can be factorized into low- and high-
pass4 components S 5 SLSH. The motivation for this is
partly practical and speaks to the special problems of
fMRI data analysis and the massive amount of data
that have to be filtered. The implementation of the
filter can be made computationally much more efficient
if the high frequencies are removed by a sparse
Toeplitz convolution matrix and the high-pass compo-
nent is implemented by regressing out low-frequency
components. In this paper we choose SL so that its
transfer function corresponds to that of the hemody-
namic response function (the implied kernel is, how-
ever, symmetrical and does not induce a delay). This is
a principled choice because it is in these frequencies
that the neurogenic signal resides. SH is, effectively,
the residual-forming matrix associated with a discrete
cosine transform set (DCT) of regressors R up to a
frequency specified in term of a minimum period, ex-
pressed in seconds. In this paper we use a cutoff period

3 An AR(16) model stands in here for nearly every other possible
model of intrinsic correlations. For example an AR(16) model can
emulate the AR plus white noise model of Purdon and Weisskoff
(1998).

4 The terms low- and high-pass filtering are technically imprecise
because the linear filter matrices are not generally convolution ma-
trices (i.e., SH does not have a Toeplitz form). However, they remove
igh- and low-frequency components, respectively. m
of 64 s.5 Some people prefer the use of polynomial or
spline models for drift removal because the DCT im-
poses a zero slope at the ends of the time series and this
is not a plausible constraint. The (squared) transfer
functions and kernels associated with the high-pass
and combined high- and low-pass (i.e., band-pass) fil-
ters are shown in Fig. 7.

The effect of filtering the data is to impose an auto-
correlation structure or frequency profile on the error
terms. This reduces the discrepancy between the un-
derlying serial correlations and those assumed by any
particular model. This effect is illustrated in Fig. 8 in
which the band-pass filter in Fig. 7 has been applied to
the empirical time series used above. Filtering mark-
edly reduces the differences among the spectral density
and autocorrelation estimates using the various mod-
els (compare Fig. 8 with Fig. 3). The question ad-
dressed in the next subsection is whether this filter
reduces mean square bias and, if so, at what cost in
terms of mean efficiency.

An Evaluation of Different Filtering Strategies

In this subsection we examine the effect of filtering
on mean contrast variance (i.e., mean 1/efficiency) and
mean square bias using the expressions in Appendix C.
This is effected under three different models of serial

5 In practice filtering is implemented as Sy [ SLSHy [ SL(y 2
R(RTy)). This regression scheme eschews the need to actually form a
large (nonsparse) residual-forming matrix associated with the DCT
matrix R. This form for S can be implemented in a way that gives a
broad range of frequency modulation for relatively small numbers of
floating point operations. Note that R is a unit orthogonal matrix. R
ould comprise a Fourier basis set or indeed polynomials. We prefer
DCT set because of its high efficiency and its ability to remove

FIG. 7. The spectral density of a band-pass filter based on the
hemodynamic response function in Fig. 1 (solid line) and a high-pass
component with a cutoff at 1/64 Hz (broken line). The corresponding
symmetrical filter kernels are shown in the inset for the high-pass
filter (broken line) and band-pass filter (solid line).
onotonic trends.
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correlations: (i) AR(1), (ii) 1/f, and (iii) AR(16). Again
we will assume that the AR(16) estimates are a good
approximation to the true intrinsic correlations. For
each model we compared the effect of filtering the data
with whitening. In order to demonstrate the interac-
tion between high- and low-pass filtering we used a
high-pass filter and a band-pass filter. The latter cor-
responds to high-pass filtering with smoothing. The
addition of smoothing is the critical issue here: The
high-pass component is motivated by considerations of
both bias and efficiency. One might expect that high-
pass filtering would decrease bias by removing low
frequencies that are poorly modeled by simple models.
Furthermore the effect on efficiency will be small be-
cause the minimum variance filter is itself a high-pass
filter. On the other hand smoothing is likely to reduce
efficiency markedly and its application has to be justi-
fied much more carefully.

The impact of filtering can be illustrated by paramet-

FIG. 8. The spectral density and autocorrelation functions pre-
dicted on the basis of the three models shown in Fig. 3, after filtering
with the band-pass filter in Fig. 7. Compare these functions with
those in Fig. 3. The differences are now ameliorated.
rically varying the amount of filtering with a filter F, fi
where S 5 s z F 1 (1 2 s)1; 1 is the identity matrix and
is varied between 0 (no filtering) and 1 (filtering with
). The models and filters considered correspond to

Va 5 HVAR(1)
V1/f
VAR(16)

and F 5 HV a
21/2 “whitening”

SH “high-pass”
SLSH “band-pass”

.

Mean square bias and mean contrast variance are
shown as functions of the filtering parameter s in Fig.
9 for the various schema above. The effect on efficiency
is remarkably consistent over the models assumed for
the intrinsic correlations. The most efficient filter is a
whitening filter that progressively decreases the ex-
pected contrast variance. High-pass filtering does not

FIG. 9. The effect of filtering on mean square bias and mean
contrast variance when applying three filters: the band-pass filter in
Fig. 8 (solid lines), the high-pass filter in Fig. 8 (dashed lines), and a
whitening filter appropriate to the model assumed for the intrinsic
correlations (dot–dash lines). Each of these filters was applied under
three models: an AR(1) model (top), a modified 1/f model (middle),
nd an AR(16) model (bottom). The expected square biases (left) and
ontrast variances (right) were computed as described in Appendix C
nd plotted against a parameter s that determines the degree of
ltering applied (see main text).
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markedly change this mean contrast variance and ren-
ders the estimation only slightly less efficient than no
filtering at all. The addition of smoothing to give band-
pass filtering decreases efficiency by increasing the
mean contrast variance by about 15%. The effects on
mean square bias are similarly consistent. Whitening
attenuates mean square bias slightly. High-pass filter-
ing is more effective at attenuating bias but only for
the AR(1) model. This is because the whitening filters
for the 1/f and AR(16) models more closely approximate
the high-pass filter. The addition of smoothing engen-
ders a substantial and consistent reduction in bias,
suggesting that, at least for the acquisition parameters
implicit in these data, smoothing has an important role
in minimizing bias. This is at the expense of reduced
efficiency.

The profiles at the bottom in Fig. 9 are interesting
because, as in the analysis presented in Fig. 6, the
mean intrinsic correlations and assumed autocorrela-
tion structure are taken to be the same. This means
that any effects on bias or efficiency are due solely to
variations about that mean (i.e., the second term in Eq.
(C.3), Appendix C). The implication is that even a so-
phisticated autocorrelation model will benefit, in terms
of inferential bias, from the particular band-pass filter-
ing considered here.

Spatially Varying Intrinsic Correlations

In the illustrative examples above we have assumed
that the variation within one voxel, over realizations,
can be approximated by the variation over realizations
in different gray-matter voxels that show a degree of
functional homogeneity. The second problem, intro-
duced at the beginning of this section, is that even if we
assume the correct form for one voxel then we will be
necessarily incorrect for every other voxel in the brain.
This reflects the spatially dependent nature of tempo-
ral autocorrelations (see also Locascio et al., 1997).
Assuming the same form for all voxels is a special
constraint under which analyses of fMRI data have to
operate. This is because we would like to use the same
statistical model for every voxel. There are both com-
putational and theoretical reasons for this, which de-
rive from the later use of Gaussian Field theory when
making inferences that are corrected for the volume
analyzed. The theoretical reasons are that different
intrinsic correlations would lead to statistics with dif-
ferent (effective) degrees of freedom at each voxel.
Whether Gaussian Field theory is robust to this effect
remains to be addressed.

Not only does appropriate temporal filtering reduce
bias engendered by misspecification of the intrinsic
correlations at any one voxel, and stochastic variations
about that specification, but it also addresses the prob-

lem of spatially varying serial correlations over voxels.
The top of Fig. 10 shows bias, computed using Eq. (3)
over 512 voxels using an AR(16) voxel-specific estimate
for the intrinsic correlations Vi and an AR(1) model
averaged over all voxels for the assumed correlations
Va. With whitening the biases (solid bars) range from
250 to 250%. With band-pass filtering (open bars) they
are reduced substantially. The effect on efficiency is
shown at the bottom. Here filtering increases the con-
trast variance in a nontrivial way (by as much as 50%
in some voxels). It is interesting to note that spatially
dependent temporal autocorrelations render the effi-
ciency very variable over voxels (by nearly an order of
magnitude). This is important because it means that
fMRI is not homogeneous in its sensitivity to evoked
responses from voxel to voxel, simply because of differ-

FIG. 10. The distribution of bias (top) and contrast variance
(bottom) over voxels using an AR(16) model to estimate intrinsic
correlations at 512 voxels and assuming the same AR(1) autocorre-
lation structure over voxels. Distributions are shown with band-pass
filtering (open bars) and with whitening (filled bars). Note how
band-pass filtering reduces bias (at the expense of reduced efficien-
cy). Efficiency is proportional to the inverse of the contrast variance.
ences in serial correlations.
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DISCUSSION

This paper has addressed temporal filtering in fMRI
time-series analysis. Whitening serially correlated
data is the most efficient approach to parameter esti-
mation. However, whitening can render the analysis
sensitive to inferential bias, if there is a discrepancy
between the assumed and the actual autocorrelations.
This bias, although not expressed in terms of the esti-
mated model parameters, has profound effects on any
statistic used for inference. The special constraints of
fMRI analysis ensure that there will always be a mis-
specification of the intrinsic autocorrelations because
of their spatially varying nature over voxels. One res-
olution of this problem is to filter the data to ensure
bias is small while maintaining a reasonable degree of
efficiency.

Filtering can be chosen in a principled way to main-
tain efficiency while minimizing bias. Efficiency can be
retained by band-pass filtering to preserve frequency
components that correspond to signal (i.e., the frequen-
cies of the HRF) while suppressing high- and low-
frequency components. By estimating the mean square
bias over the range of intrinsic autocorrelation func-
tions that are likely to be encountered, it can be shown
that supplementing a high-pass filter with smoothing
has an important role in reducing bias.

The various strategies that can be adopted can be
summarized in terms of two choices: (i) the assumed
form for the intrinsic correlations Va and (ii) the filter
applied to the data S. Permutations include

Va 5 5
1
1
VAR(p)
VAR(p)

,

S 5 5
1 ordinary least squares
SLSH conventional “filtering” ~SPM97!
KAR(p)

21 conventional “whitening”
SLSH band-pass filtering ~SPM99!

,

where the assumed form is an AR(p) model. The last
strategy, adopted in SPM99, is motivated by a balance
between efficiency and computational expediency. Be-
cause the assumed correlations Va do not enter explic-
itly into the computation of the parameter estimates
but only into the subsequent estimation of their stan-
dard error (and ensuing T or F statistics), the autocor-
relation structure and parameter estimation can be
implemented in a single pass through the data. SPM99
has the facility to use an AR(1) estimate of intrinsic
correlations, in conjunction with (separately) specified
high- and low-pass filtering.

A further motivation for filtering the data, to exert
some control over the variance–bias trade-off, is that

the exact form of serial correlations will vary with a
scanner, acquisition parameters, and experiment. For
example the relative contribution of aliased bio-
rhythms will change with TR and field strength. By
explicitly acknowledging a discrepancy between the
assumed approximation to underlying correlations a
consistent approach to data analysis can be adopted
over a range of experimental parameters and acquisi-
tion systems.

The issues considered in this paper apply even when
the repetition time (TR) or interscan interval is long.
This is because serial correlations can enter as low-
frequency components, which are characteristic of all
fMRI time series, irrespective of the TR. Clearly as the
TR gets longer, higher frequencies cease to be a con-
sideration and the role of low-pass filtering or smooth-
ing in reducing bias will be less relevant.

The conclusions presented in this paper arise under
the special constraints of estimating serial correlations
in a linear framework and, more specifically, using
estimators that can be applied to all voxels. The inher-
ent trade-off between the efficiency of parameter esti-
mation and bias in variance estimation is shaped by
these constraints. Other approaches using, for exam-
ple, nonlinear observation models, may provide more
efficient and unbiased estimators than those we have
considered.

It should be noted that the main aim of this paper is
to provide an analytical framework within which the
effects of various filtering strategies on bias and effi-
ciency can be evaluated. We have demonstrated the
use of this framework using only one data set and do
not anticipate that all the conclusions will necessarily
generalize to other acquisition parameters or statisti-
cal models. What has been shown here is, however,
sufficient to assert that, for short repetition times,
band-pass filtering can have an important role in ame-
liorating inferential bias and consequently in ensuring
the relative robustness of the resulting statistical tests.

APPENDIX A

Forms of Intrinsic and Assumed Autocorrelations

A distinction is made between the true intrinsic au-
tocorrelations in a fMRI time series of length n and
those assumed. These correlations are characterized by
the (n 3 n) convolution matrices Ki and Ka, respec-
ively, with an ensuing noise process e 5 Kiz, where z,

is an independent innovation ;N(0, s2I) and
diag{KiKi

T} 5 1. The corresponding autocorrelation ma-
trices are Vi 5 KiKi

T and Va 5 KaKa
T. In this appendix

we describe some models of intrinsic autocorrelations,
specifically pth order autoregressive models AR(p)
e.g., AR(1); Bullmore et al., 1996)] or those that derive
rom characterizations of noise autocovariance struc-
ures or equivalently their spectral density (Zarahn et

l., 1997). For any process the spectral density g(v) and
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autocorrelation function r(t) are related by the Fourier
transform pair

r~t! 5 FT$g~v!%, g~v! 5 IFT$r~t!%,

where V 5 Toeplitz$r~t!% and K 5 V 1/2.
(A.1)

Here t 5 [0, 1, . . . , n 2 1] is the lag in scans with r(0) 5
and v 5 2pi (i 5 [0, . . . , n 2 1]) denotes frequency.
he Toeplitz operator returns a Toeplitz matrix (i.e., a
atrix that is symmetrical about the leading diago-
al). The transfer function associated with the linear
lter K is l(v), where g(v) 5 ul(v)u2.

Autoregressive Models

Autoregressive models have the following form:

e 5 Ae 1 z N e 5 ~1 2 A! 21z,

giving Ka } ~1 2 A! 21 where A

5 3
0 0 0 0 . . .
a1 0 0 0
a2 a1 0 0
a3 a2 a1 0
···

· · ·
4 .

(A.2)

The autoregression coefficients in the triangular ma-
trix A can be estimated using

a 5 @a1, . . . , ap#

5 3
1 r~1! · · · r~p!

r~1! 1 ······
· · · r~1!

r~p! · · · r~1! 1
4

21

3 r~1!
r~2!

···r~p 1 1!4 .
(A.3)

The corresponding spectral density over n frequencies
is given by

g~v! 5 uFTn$@1, 2a#%u 22, (A.4)

where FTn{ z } is a n-point Fourier transform with zero
padding (cf. the Yule–Walker method of spectral den-
sity estimation). With these relationships [(A.1) to
(A.3)] one can take any empirical estimate of the auto-
correlation function r(t) and estimate the autoregres-
sion model-specific convolution Ka and autocorrelation
Va 5 KaKa

T matrices.

Modified 1/f Models

Ka and Va can obviously be estimated using spectral
ensity through Eq. (A.1) if the model of autocorrela-
ions is expressed in frequency space; here we use the
nalytic form suggested by the work of Zarahn et al.
(1997),
us~v!u 5
q1

v
1 q2, where g~v! 5 us~v!u 2. (A.5)

Note that Eq. (A.5) is linear in the parameters which
can therefore be estimated in an unbiased manner
using ordinary least squares.

APPENDIX B

Efficiency and Bias

In this section we provide expressions for the effi-
ciency and bias for any design matrix X and any con-
trast of parameter estimates specified with a vector of
contrast weights c (this framework serves all the fil-
tering schemes outlined in the main text). These ex-
pressions are developed in the context of the general
linear model and parametric statistical inference (Fris-
ton et al., 1995). The bias here is in terms of the
estimated standard error associated with any ensuing
statistic. Consider the general linear model,

Sy 5 SXb 1 SKiz, (B.1)

where y is the response variable and S is an applied
filter matrix. The efficiency of the general least squares
contrast estimator cTb̂GLS is inversely proportional to
its variance,

Efficiency } Var$c Tb̂GLS% 21

Var$c Tb̂GLS% 5 s 2c T~SX! 1SViS T~SX! 1Tc,
(B.2)

where 1 denotes the pseudoinverse. Efficiency is max-
imized with the Gauss–Markov estimator, when S 5
Ki

21 if the latter were known. However, there is an-
ther important consideration: The variance of the con-
rast has to be estimated in order to provide for statis-
ical inference. This estimator and its expectation are

V̂ar$c Tb̂%

5
y TS TR TRSy

trace$RSVaS T%
c T~SX! 1SVaS T~SX! 1Tc

^V̂ar$c Tb̂%& (B.3)

5
s 2trace$RSViS T%

trace$RSVaS T%
c T~SX! 1SVaS T~SX! 1Tc,

where R 5 I 2 SX(SX)1 is a residual-forming matrix.
Bias can be expressed in terms of the (normalized)
difference between the actual and the expected con-

trast variance estimators,
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Bias$S, Vi%

5
Var$c Tb̂GLS% 2 ^V̂ar$c Tb̂GLS%&

Var$c Tb̂GLS%
(B.4)

5 1 2
trace$RSViS T%c T~SX! 1SVaS T~SX! 1Tc

trace$RSVaS T%c T~SX! 1SViS T~SX! 1Tc
.

The critical thing about Eq. (B.4) is that bias is reduced
as S induces more correlations relative to Vi. In other
words there are certain forms of temporal filtering for
which SViST ' SVaST even if Vi Þ Va. In extreme cases
this allows one to essentially ignore intrinsic correlations
with temporal filtering (i.e., Va 5 I) although this strat-
egy may be inefficient. Generally bias becomes sensitive
to discrepancies between the actual and the assumed
correlations when no filtering is employed and exquis-
itely so when S is a deconvolution matrix (e.g., whitening
under the wrong assumptions about Vi).

APPENDIX C

Mean Square Bias

In Appendix B the expression for bias treated Vi as a
fixed deterministic variable. In this appendix we derive
an approximation for the expected squared bias when
Vi is a random stochastic variable parameterized in
terms of its AR coefficients a. Let

f~r, S! 5 Bias$V$a# 1 Qr%, S% 2. (C.1)

he operator V{a} returns the autocorrelation matrix
given the underlying AR coefficients according to A.2. a#
are the expected coefficients and Q contains the eigen-
vectors of Cov{a} 5 ^(a 2 a# ) z (a 2 a# )T& such that

r 5 Q T~a 2 a# ! f H ^r& 5 0
^r z r T& 5 l (C.2)

and l is a leading diagonal matrix of associated eigen-
alues. Mean square bias is approximated with

j~S! 5 ^f~r, S!&r < f~0, S! 1 O
i

li

2

­ 2f~0, S!

­r i
2

. (C.3)

This follows from taking the expectation of the second-
order approximation of the Taylor expansion of Eq. (C.1)
around r 5 0 and substituting the expectations in Eq.
(C.2). Note that, apart from the second-order approxima-
tion, no distributional assumptions have been made
about the intrinsic AR coefficients. If these coefficients
had a multivariate Gaussian distribution then (C.3)
would be exactly right. The first term in (C.3) reflects the

mean square bias attributable to the deviation between
the assumed and the expected autocorrelation function.
The second term reflects the contribution to bias due to
variation about that expectation. An equivalent expres-
sion for mean contrast estimate variance obtains by sub-
stituting Eq. (B.2) into Eq. (C.1).

In this paper the expectation and covariances of the
AR coefficients were determined empirically using
multiple realizations over gray-matter voxels and an
AR(16) model. The partial derivatives in C.3 were es-
timated numerically.
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