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Coregistration of functional PET and T1-weighted
MR images is a necessary step for combining func-
tional information from PET images with anatomical
information inMR images. Several coregistration algo-
rithms have been published and are used in functional
brain imaging studies. In this paper, we present a
comparison and cross validation of the twomostwidely
used coregistration routines (Friston et al., 1995,Hum.
Brain Map. 2: 165–189; Woods et al., 1993, J. Comput.
Assisted Tomogr. 17: 536–546). Several transformations
were applied to high-resolution anatomicalMR images
to generate simulated PET images so that the exact
(rigid body) transformations between each MR image
and its associated simulated PET images were known.
The estimation error of a coregistration in relation to
the known transformation allows a comparison of the
performance of different coregistration routines. Un-
der the assumption that the simulated PET images
embody the salient features of real PET images with
respect to coregistration, this study shows that the
routines examined reliably solve theMRI toPET coreg-
istrationproblem. r 1997 Academic Press

INTRODUCTION

In neuroimaging, coregistration of functional PET
and anatomical MR images is essential for combining
information from both image modalities. The benefit of
having coregistered images is that it enables the visual-
ization of functional PET data by superimposing it on a
high-resolution anatomical MR image and therefore
improves localization of neural activation loci. Several
algorithms have been proposed by various authors
(Andersson et al., 1995;Ardekani et al., 1995; Friston et
al., 1995; Mangin et al., 1994; Woods et al., 1993). We
chose twowidely used coregistration algorithms (Woods
et al., 1993; Friston et al., 1995) to cross validate on the
same test data set. The first routine is contained in the
Automated Image Registration package (AIR, Version

2.03) and the second is part of the Statistical Paramet-
ric Mapping package (SPM95). This cross validation
includes an empirical validation of the SPM routine,
which had not been undertaken before, and facilitates a
comparison of the performance of both routines.
To generate a suitable PET data set, we used simu-

lated PET images, which were generated by applying a
series of transformations to some MR images. Rigid
body transformations applied to the simulated PET
images were used to simulatemisregistrations between
the PET and the MR data. After running both coregis-
tration routines on the MR and simulated PET images,
it was possible to assess and compare the errors
associated with them.

METHODS

We describe the basic concepts of MRI and PET
coregistration, followed by an overview and theoretical
comparison of the AIR and SPM algorithms. We also
describe the cross validation procedure, particularly
generation of simulated PET images.

Basic Concepts

Generally, an MRI to PET coregistration algorithm
transforms an MR image M in such a way that each
voxel in the transformed MR imageM8 and in the PET
image P corresponds to the same voxel in real brain
space. Since images of both modalities are acquired
from the same subject, a rigid body transformation T
mapsM toM8. We assume that the scanning processes
have not introduced nonrigid spatial transformations
into either the PET or the MR image or that these
distortions are small. We also assume that no spatial
scaling factor of the data is introduced by inaccurate
voxel sizes. The required transformation can then be
described by translations and rotations in three dimen-
sions so that any coregistration algorithm computes six
parameters: x, y, and z translation; pitch; roll; and yaw.
Themain challenge inMRI and PET coregistration is
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that, even if both images are perfectly coregistered,
there is no ‘‘simple’’ function which maps voxel intensi-
ties from the MR uniquely to the PET image. For
instance, scalp and white matter produce roughly the
same voxel intensities within an MR image, but are
associated with different voxel values within a PET
image. Therefore, coregistration based only on the
voxel intensities of both images is difficult, if not
impossible. To address this issue, the images can be
preprocessed to eschew this problem of nonunique
mapping. An example is the often-used (manual) scalp-
editing of the MR image prior to coregistration. This
sort of preprocessing renders the coregistration prob-
lem solvable; however, it is desirable to automate this
preprocessing task and incorporate it into a coregistra-
tion routine, since manual scalp-editing can be labori-
ous for the user. The SPM algorithm is an example of
this nonsupervised class of algorithm.
Since we will use the standard (4 3 4)-matrix format

throughout the text to represent a transformation T,
this matrix format is described in the following. A
(4 3 4)-transformation matrix, which we also inter-
changeably denote by T, is given by

T 5 1
t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
0 0 0 1

2 , (1)

where the elements of the first three rows of T are
chosen in a way such that

1
y1
y2
y3
1
2 5 T · 1

x1
x2
x3
1
2 , (2)

where x 5 (x1, x2, x3)8 is a voxel position in the original
image M and y 5 ( y1, y2, y3)8 is the according voxel
position in M8 after transformation with T. For in-
stance, the matrix

Tt 5 1
1 0 0 t14
0 1 0 t24
0 0 1 t34
0 0 0 1

2 (3)

would represent a three-dimensional translation by t14
in x, t24 in y, and t34 in z direction (voxels). The rotations
rx, ry, and rz (radians) around the three axes (pitch, roll,

and yaw) are similarly coded by

Trx
5 1

1 0 0 0

0 cos (rx ) sin (rx ) 0

0 2sin (rx ) cos (rx ) 0

0 0 0 1
2 , (4)

Try
5 1

cos (ry ) 0 sin (ry ) 0

0 1 0 0

2sin (ry ) 0 cos (ry) 0

0 0 0 1
2 , (5)

Trz
5 1

cos (rz ) sin (rz ) 0 0

2sin (rz ) cos (rz ) 0 0

0 0 1 0

0 0 0 1
2 . (6)

The advantage of this matrix representation is that
several sequentially applied transformations Ti, i 5

1, . . . , Q, can be expressed by only one transformation
matrix T :

T 5 p
i51

Q

Ti . (7)

(Note that T1 is not the first, but the last applied
transformation.) In this way, we can represent a rigid
body transformation with six parameters by one trans-
formation matrix. Another important property of these
matrices is that the inverse of the matrix T (denoted
T21) is also the inverse of the transformation T. SPM
and AIR basically use the same format except for the
order of rotations, which does matter as one can see
from Eqs. (4) to (6). In SPM, a rigid body transforma-
tion matrix is given by T 5 Tt · Trx · Try · Trz , and in AIR
it is T 5 Tt · Try · Trx · Trz.

The AIR Algorithm

We used the AIR 2.03 routine with the cost function
based upon the standard deviation of the ‘‘ratio image’’
for cross validation. Although Version 2.03 of the AIR
package also offers a second routine for coregistration,
we chose the first routine, since it had been described in
Woods et al. (1993) and already cross validated with
other coregistration routines (Strother et al., 1994).
The approach taken by the AIR algorithm is to define

a cost function for measuring the MRI and PETmisreg-
istration. A transformation matrix is then found by
iterative, nonlinear minimization of this cost function.
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The AIR algorithm is based on the key assumption
that similar voxel intensities in the MR image corre-
spond to the same tissue type. We refer to this assump-
tion as the ‘‘similarity assumption’’ in the remainder of
text. The similarity assumption is roughly valid if the
T1-weighted MR image is scalp-edited, i.e., voxels not
corresponding to brain tissue are set to 0. This scalp-
editing has to be done prior to coregistration. Assuming
that the similarity assumption holds not only for MR
images but also for PET images, the idea is to find a
rigid body transformation T so that all MR voxels with
the same intensity value are mapped to a set of similar
PET voxel intensity values. The similarity of a set of
PET voxels can be measured by the ratio of its standard
deviation and mean. Described more formally, the
algorithm uses a histogram segmentation to segment
the MR image into K voxel intensity partitions Pi and
minimizes a weighted ratio of the standard deviations
and means of the PET voxels corresponding to Pi by
manipulating the transformation matrix T. The key
formula of the algorithm is

f (PET,MRI, T ) 5
1

N o
j

K

nj
sj

aj
, (8)

where PET is the PET image,MRI is the MR image, T
stands for the transformation matrix, nj is the number
of MRI voxels with an intensity of j, N 5 Sj

K nj, aj is the
mean of all PET voxel values with a correspondingMRI
voxel intensity in partition j, and sj is their standard
deviation. Changing T, for example translating the
MRI in relation to the PET image by 1 mm, means
changing the value of sj /aj for all j.
The aim of the algorithm is to find T such that the

right-hand side of Eq. (8) is minimized. This computa-
tion requires a nonlinear minimization scheme, be-
cause the additive components in Eq. (8) are not
independent. Theminimizationmethod chosen is South-
well’s Relaxation Search (Pierre, 1986), which is an
iterative, univariateNewton–Raphson search. The over-
all minimization is performed iteratively, each step
producing a new transformation matrix T, which is
subsequently used in the next Newton–Raphson itera-
tion. When the coregistration is good enough, i.e., the
minimization process arrives at a global or local mini-
mum in the parameter space of T, or when a prespeci-
fied maximum of iteration steps is reached, the algo-
rithmwill stop and return the computed transformation
matrix T.

The SPM Algorithm

The basic strategy of the SPM algorithm is to trans-
form the MR image to an emulated PET image and to
map this image to the real PET image.

The first step is to segment the MR image into four
partitions: gray matter, white matter, cerebrospinal
fluid (CSF), and ‘‘everything else.’’ Because of this
preprocessing segmentation it is possible to use either a
scalp-edited or a non-scalp-editedMR image for coregis-
tration: The algorithm should segment anyMRI into its
four partitions. In the case of a non-scalp-edited MRI,
the ‘‘everything else’’ partition should contain scalp,
skull, and meninges.
The segmentation routine is described in detail else-

where (Friston et al., 1996) and works as follows: First,
the MRI is fitted to an MRI template by means of a
12-parameter affine transformation. For each voxel of
the template, there exists a three-element vector speci-
fying the a priori probabilities for gray matter, white
matter, and CSF. This probability map is used to
segment the fitted MRI into its four partitions using an
iterative fuzzy clustering scheme. The next step is to
generate an emulated PET image by modifying the
voxel intensities so that the ratio of the mean of white
matter to the mean of gray matter voxels is 1:3 and the
corresponding ratio of CSF to gray matter is 1:10.
At this point, the remaining task is to find a rigid

body transformation T, which coregisters the emulated
PET to the real PET image. The method used is to
linearize the optimization problem and to iteratively
find a solution with linear methods. More precisely,
each iteration solves an overdetermined linear equa-
tion system in a least-squares sense.
To linearize, two key assumptions aremet by smooth-

ing the emulated PET image with a Gaussian filter
with 8-mm FWHM (full width at half maximum):
1. The effects of applying a sufficiently small transfor-

mation parameter (e.g., tx) to the emulated PET image
can be approximated by some linear function of the
intensity values using a first-order Taylor series approxi-
mation.
2. The effects of applying sufficiently small transfor-

mation parameters to the emulated PET image are
independent.
These two assumptions are the prerequisites to formu-

late the coregistration problem as the following linear
equation system,

3≠PET≠tx

≠PET

≠ty

≠PET

≠tz

≠PET

≠rx

≠PET

≠ry

≠PET

≠rz
1 MRI4 q

5 PET ,

(9)

where tx, ty, and tz stand for x, y, and z translation; rx, ry,
and rz for pitch, roll, and yaw; PET is the real PET
image, 1 is a column vector of 1’s, andMRI denotes the
emulated PET image.
Note that all images (e.g., dPET/dtx or PET) are

represented as column vectors. Equation (9) assumes
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that the observed PET can be described by a linear
combination of the emulated PET image and the addi-
tive effects of the six transformation parameters ap-
plied to PET. The first six column vectors of the
left-hand side—the numerical partial derivatives of the
PET image with respect to the six transformation
parameters—are known: small transformations are
applied to the PET image and the change is measured.
The solution, how the MR image has to be moved to
approximate a good coregistration of both images, then
consists of the first six elements of the vector q.
This step—solving for q and applying the determined

parameters to the emulated PET image—is iterated a
fixed number of times to find the best transformation
matrix T (in the current implementation of SPM95 this
number is 16). The last iteration step returns the final
T in terms of the first six components of q.

Theoretical Comparison

Clearly, the main difference from a theoretical point
of view between the AIR and the SPM algorithm is the
applied optimization method for computing a transfor-
mation matrix T. Whereas the AIR method employs a
nonlinear Newton–Raphson search to fix one param-
eter at a time, the SPMmethod solves a linear equation
system to compute six transformation parameters in
one step. Both algorithms have to iterate these steps to
converge on a good coregistration solution. It is impor-
tant to note that the SPM routine finds a solution in a
nonlinear fashion, although a single iteration is only
capable of finding a linear solution.
For different input images, the required computing

time varies for both routines. TheAIR routine is mainly
dependent on the iterative optimization, whose conver-
gence behavior is variable (Woods et al., 1993). The
SPM routine consists of three tasks, which are affine
transformation, segmentation, and iterative solving of
the linear equation system. The required computing
time of the third task is only dependent on the dimen-
sionality of the images and the fixed number of itera-
tions and is thus rather predictable. The affine transfor-
mation and segmentation, however, use optimization
routines, which are based on a quality measure of the
solution found so that the required computing time
varies for different input images.
The required time for coregistering anMR and a PET

image is 5 to 10 min for the AIR routine (measured on a
Sparc 20 workstation), whereas the SPM routine needs
roughly 20 min for segmentation and 5 min for coregis-
tration. However, note that these times are not directly
comparable because the time required for the AIR
coregistration does not include the necessary scalp-
editing of the MR image. If this scalp-editing is done
manually, the overall time of an AIR routine coregistra-
tion depends on the skill of the user. A reasonably

skilled user is able to manually edit an MR image in
less than an hour. There are also third-party software
packages available, which can be used to edit MR
images in a semiautomatic fashion so that the required
time is reduced further.

Cross Validation

In this section, we describe how we cross validated
the AIR and the SPM routines. Basically, the cross
validation consists of three steps:

c generate simulated PET images,
c run the coregistration routines, and
c measure the error.

To generate simulated PET images, we applied a series
of transformations to six MR images. This process is
not exactly the same as in the SPM routine to generate
an emulated PET image. We will describe the rationale
for not choosing the SPM routine for generation of
simulated PET images under Discussion.
The T1-weightedMR images were generated on a 1-T

scanner by a RF spoiled volume acquisition with TR 5

21 ms, TE 5 6 ms, and flip angle 5 35°. The data were
acquired as a 256 3 192 matrix. One hundred forty
contiguous axial slices with a thickness of 1.3 mm were
obtained, which were interpolated to generate 182
slices. The field of view was 25 cm, resulting in voxel
dimensions of 1 3 1 3 1 mm.
The simulated PET images which were generated by

the sequence described below, had a dimension of [128
128 40] in voxels and a voxel size of [2.05 2.05 3.43] so
that the whole brain including the cerebellum was
covered by the simulated PET scans.

c The MR image was scalp-edited and segmented by
interactive thresholding into gray matter, white mat-
ter, and CSF components.

c The gray matter, white matter, and CSF intensi-
ties were modified in such a way that the mean of the
white matter voxels related to the mean of the gray
matter voxels by a ratio of 1:3. The corresponding ratio
of CSF to gray matter was 1:10.

c Arigid body transformation Torig, which simulated
misregistration between MR and PET data, was ap-
plied and the resulting image was resampled to the
PET voxel size. Torig was saved for future reference. A
trilinear interpolation was used to implement the
sampling.

c The image was smoothed in each direction to a
resolution of 7 mm FWHM by applying a three-
dimensional Gaussian filter.

c Gaussian white noise was added at 30% of the
mean intensity value of brain voxels to simulate the
worse signal to noise ratio of the PET image.
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c The image was smoothed to PET resolution (,8
mm FWHM) by another three-dimensional Gaussian
filter with a FWHM of 4 mm in each direction. This
special order of filtering and noising was applied to
visually imitate the typical PET intracranial texture.

Figure 1 shows a slice of such a transformed simulated
PET image. Comparing it to approximately the same
slice in the corresponding real PET of the same subject
shows that the simulated PET visually resembles the
real PET.
This process was repeated 32 times for each MR

image to generate a series of simulated PET images. In
this way, a data set consisting of 6 MR images and 192
simulated PET images was generated. Since the origi-
nal transformation matrices Torig are known for all
simulated PET images, the error of the estimated
transformation matrix T can be computed by Terr 5

Torig · T21, and the performance of the coregistration
routines in terms of transformation parameters can be
compared. To extract the error of the six rigid body
transformation parameters tx, ty, tz, rx, r y, and rz from
Terr, the inverse calculations of those described under
Basic Concepts have to be applied. The parameter
errors are given by

error(tx ) 5 Terr(1, 4)

error(ty ) 5 Terr(2, 4)

error(tz ) 5 Terr(3, 4)

error(ry ) 5 sin21(Terr (1, 3))

error(rz ) 5 sin21(Terr (1, 2)/cos(ry ))

error(rx ) 5 sin21(Terr (2, 3)/cos(ry )),

(10)

where the order of rotation is defined as yaw, roll, and
pitch (rz, ry, and rx).
We tested the AIR routine and two options of the

SPM routine, where one option was to use scalp-edited
MR images and the second was to use non-scalp-edited
MR images. As a result, we produced 6 · 32 · 4 5 768
transformation matrices.
To examine various aspects of the coregistration, we

used three types of transformation matrices Torig: The
first simulated typical coregistration mismatches by
using random values. In the other two types only one
transformation parameter was varied, the z translation
tz or the pitch rx. These were chosen because estimating
tz and rx is normally the most difficult task of the
coregistration routines. Estimating tx, ty, ry, and rz are
in general easier because of the symmetry of the brain.
To change only one parameter and hold the remaining
parameters constant can reveal some information about
the influence of this parameter on the overall error. Two
MR images were assigned to each of these three
manipulations or groups.
The random translations of the first group had a

Gaussian distribution with ,N(0, 5) (mm) and the
random rotations were also Gaussian with ,N(0, 3)
(degrees). In the second group, we only changed the z
translations tz of the simulated PET images between 0
and 62mmwith an increase of 2 mm per image. For the
simulated PET images of the third group, we changed
the pitch rx between 0 and 15.5° in 0.5-degree steps.
Since we generated a number of simulated PET

images from each of the six MR images, we implicitly
assumed that the variability of coregistrations between
each MR image and its derived simulated PET images
was the same as were individual MR–PET image pairs
used.

FIG. 1. Visual comparison of a simulated PET with a real PET slice of the same subject. (Left) Real pet and (right) simulated PET.

275MRI AND PET COREGISTRATION—A CROSS VALIDATION



RESULTS

The results of all coregistration runs are shown in
Tables 1–6. In each of these tables the mean and the
standard deviation of the errors of the coregistration
routines with respect to the six transformation param-
eters for one group of simulated PET images are
displayed so that each of the six original MR images is
represented by a separate table. Since each of these six
groups comprises 32 PET images, the standard devia-
tions displayed in the tables have 31 degrees of free-
dom. Tables 1 and 2 show the results of the groups in
which random transformations were applied to the
simulated PET images. Tables 3 and 4 refer to the
groups of z-translated simulated PET images and
Tables 5 and 6 to the groups of x-rotated (pitch)
simulated PET images.
For illustration we chose a group (corresponding to

Table 6) and displayed in Fig. 2 the translational and
rotational errors of both routines. The first row of the
figure displays the translational errors (mm) as func-
tions of the three translation parameters tx, ty, and tz

and the second row shows the rotational errors rx, ry,
and rz (degrees) for all axes.
The individual performance of both routines can be

summarized as follows:

SPM Routine with Scalp-Edited MR Images

In Fig. 2, the results of the SPM routine with prior
scalp-editing are displayed as a solid line. From Tables
1–6, one can see that the mean error of translation in x,
y, and z direction is below 1 mm except in three
instances (z translation in Tables 1, 2, and 3). The
standard deviations of the translation errors are small
throughout all the simulated PET data sets. Regarding
the estimation of the rotations, the mean error of pitch,
roll, and yaw estimates is always smaller than 0.60°
and often close to 0.

SPM Routine with Non-Scalp-Edited MR Images

The results of the SPM routine without prior scalp-
editing are displayed as a dotted line in Fig. 2. Except

TABLE 1

Group Random Transformations 1: Translational (mm) and
Rotational (Degrees) Mean Errors for 32 Simulated PET
Images, to Which Random Transformations [Translations
,N(0, 5) (mm), Rotations ,N(0, 3) (degrees)] WereApplied

SPM with
scalp-editing

SPM without
scalp-editing AIR

Mean SD Mean SD Mean SD

x transl. 20.012 0.145 0.670 0.236 0.039 0.220
y transl. 20.422 0.175 21.150 0.172 0.631 0.259
z transl. 1.478 0.297 2.071 0.295 21.437 0.370
Pitch 20.599 0.086 21.131 0.082 0.401 0.093
Roll 0.024 0.091 20.145 0.151 0.044 0.037
Yaw 0.120 0.060 20.260 0.078 20.012 0.029

TABLE 2

Group Random Transformations 2: Translational (mm) and
Rotational (Degrees) Mean Errors for 32 Simulated PET
Images, to Which Random Transformations [Translations
,N(0, 5) (mm), Rotations ,N(0, 3) (Degrees)] WereApplied

SPM with
scalp-editing

SPM without
scalp-editing AIR

Mean SD Mean SD Mean SD

x transl. 0.246 0.179 0.125 0.289 0.029 0.283
y transl. 20.538 0.232 0.368 0.205 0.457 0.261
z transl. 1.668 0.386 1.265 0.365 20.973 0.421
Pitch 20.530 0.160 20.345 0.154 0.353 0.119
Roll 0.054 0.100 0.051 0.196 0.026 0.055
Yaw 0.020 0.051 20.012 0.069 0.009 0.039

TABLE 3

Group z Translation 1: Translational (mm) and Rotational
(Degrees) Mean Errors for 32 Simulated PET Images, to
Which Translations in z Direction (Ranging from 0 to 62 mm)
WereApplied

SPM with
scalp-editing

SPM without
scalp-editing AIR

Mean SD Mean SD Mean SD

x transl. 0.167 0.080 21.436 0.110 20.072 0.061
y transl. 20.353 0.121 1.324 0.242 0.426 0.064
z transl. 1.132 0.254 20.028 0.374 20.872 0.106
Pitch 20.235 0.073 0.462 0.133 0.296 0.048
Roll 20.076 0.065 20.469 0.080 0.026 0.052
Yaw 20.033 0.038 0.667 0.058 0.035 0.024

TABLE 4

Group z Translation 2: Translational (mm) and Rotational
(Degrees) Mean Errors for 32 Simulated PET Images, to
Which Translations in z Direction (Ranging from 0 to 62 mm)
WereApplied

SPM with
scalp-editing

SPM without
scalp-editing AIR

Mean SD Mean SD Mean SD

x transl. 0.247 0.078 0.462 0.107 0.049 0.052
y transl. 20.153 0.094 0.788 0.142 0.325 0.070
z transl. 0.692 0.171 20.708 0.305 20.824 0.120
Pitch 20.161 0.053 0.475 0.091 0.241 0.043
Roll 20.014 0.034 20.295 0.056 0.060 0.022
Yaw 20.027 0.038 20.293 0.041 0.007 0.021
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for one instance (Table 2) themean errors of translation
and rotation are larger if the input of the coregistration
routine is a non-scalp-edited MR image. This is most
obvious in Table 6, where the mean errors of y and z
translations are 2.16 and 2.91 mm, respectively, com-
pared to 0.02 and 0.62 mm (SPM routine with scalp-
edited MRIs). However, in most cases the increase of
mean error (scalp-edited vs non-scalp-edited MRI) is at
most around 1 mm in translation and 0.3° in rotation.

AIR Routine

The results of the AIR routine are displayed as a
dashed line in Fig. 2. The mean translation errors are
always smaller than 1 mm except in one instance (z
translation in Table 1) and have a small standard
deviation. Themean rotation errors are close to 0° in all
experiments; the maximal error is 0.40° (Table 1 pitch
estimate).
One can also see from Fig. 2 that the error of both

routines in terms of the six parameters is independent
on the actual x rotation, even if it is as high as a pitch of
15.5°. This independence of error on actual displace-
ments also holds for the other five groups.
On a Sparc-20 computer, the time required for the

AIR coregistration is roughly 5 to 10 min. The SPM
routine (including noninteractive segmentation of the
MR image) needs roughly 20 min for segmentation and
5 min for coregistration. These times are not directly
comparable without considering the additional time
required for scalp-editing the MR image, which is a
necessary preprocessing step for the AIR routine. See
Theoretical Comparison for an estimation of the re-
quired time to scalp-edit an MR image.

DISCUSSION

The basic result of our cross validation is that AIR
and SPM coregistration perform well on our simulated

PET data set. The maximal mean z translation errors
made by the AIR routine and by the SPM routine are
1.44 and 1.67 mm, respectively. The maximal mean
rotation error is smaller than 0.40° for the AIR routine
and 0.60° for the SPM routine. The performance of the
SPM routine decreases if the MR image is not scalp-
edited. The maximal mean z translation error is 2.91
mm and the maximal mean rotation error is 1.16°.
Both routines provide accurate solutions to the coreg-

istration problem on scalp-edited MR images. More-
over, the small standard deviations of the coregistra-
tion parameters suggest that the routines are robust.
For most applications, the mean error made by the

SPM routine on non-scalp-edited MR images is still
acceptable. However, if optimal accuracy is needed,
manual or semiautomatic scalp-editing of the MR
image is recommended when using the SPM routine.
The correct interpretation of these results demands

some further understanding of the validation process.
First of all, one has to accept that our simulated PET
data is a good approximation to reality. It seems
appropriate to simulate the relative voxel intensities of
the PET by the ratio 1:3:10 (CSF:white matter:gray
matter), scale the image to PET voxel size, smooth, add
some noise, and finally smooth the resulting image to
PET resolution. After these steps, the simulated PET
images bear a strong resemblance to real PET images,
as can be seen in Fig. 1. It could be argued that any
deviation from the white:gray matter (3:10) or CSF:
gray matter (1:10) ratio might decrease the perfor-
mance of the SPM routine, since the emulated PET
image is generated with these ratios. However, this is
not a real limitation on the accuracy of the SPM
routine. As one can see from Eq. (9), the polynomial fit
between the emulated PET on the left side and simu-
lated PET on the right side of the equation will
compensate for most types of a deviation from the
assumption about the ratios, particularly for a linear

TABLE 5

Group Pitch 1: Translational (mm) and Rotational (De-
grees) Mean Errors for 32 Simulated PET Images, to Which
Rotations around the x Axis (Ranging from 0 to 15.5°) Were
Applied

SPM with
scalp-editing

SPM without
scalp-editing AIR

Mean SD Mean SD Mean SD

x transl. 0.236 0.097 0.310 0.102 0.021 0.058
y transl. 0.105 0.131 0.506 0.127 0.653 0.226
z transl. 0.165 0.199 21.267 0.243 20.585 0.109
Pitch 20.068 0.067 20.006 0.085 0.097 0.080
Roll 0.084 0.057 0.023 0.074 20.033 0.029
Yaw 0.039 0.048 0.051 0.058 20.044 0.023

TABLE 6

Group Pitch 2: Translational (mm) and Rotational (De-
grees) Mean Errors for 32 Simulated PET Images, to Which
Rotations around the x Axis (Ranging from 0 to 15.5°) Were
Applied

SPM with
scalp-editing

SPM without
scalp-editing AIR

Mean SD Mean SD Mean SD

x transl. 0.047 0.118 0.548 0.116 0.037 0.058
y transl. 20.017 0.124 2.161 0.199 0.719 0.289
z transl. 0.617 0.225 22.910 0.319 20.869 0.073
Pitch 20.280 0.069 1.162 0.111 0.107 0.033
Roll 0.055 0.060 0.045 0.081 0.053 0.026
Yaw 0.106 0.059 20.155 0.061 20.010 0.030
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scaling of the ratio. Moreover, in our opinion, the most
important image features for a thorough test of MRI to
PET coregistration routines are the outer brain bound-
aries and the boundaries between gray and white
matter so that the exact ratio between the three
partitions only plays a minor role. Both routines rely
inherently on these boundaries:
The AIR routine segments theMR image intoK voxel

intensity partitions (see above), and tries to find a
transformation which maps similar PET voxel intensi-
ties into each partition. Assuming that the similarity
assumption holds for the PET and MR image, it is clear
that a suboptimal transformation is ‘‘punished’’ by the
cost function, because the weighted sum of standard
deviations sj will increase. This effect will work best if
the difference in voxel intensity between roughly homo-
geneous regions (gray and white matter and nonbrain)
is large and the transition between areas is sharp.
Although the intrinsic smoothness and partial volume
effects of a PET image render the boundaries less
sharp, this feature enables the coregistration process to
more reliably find the global minimum within the
parameter space. The dependence of the SPM coregis-
tration on image boundaries is also quite obvious. To
find a set of coregistration parameters T the partial
derivatives ≠PET/dT of the PET image with respect to
the transformation parameters T [Eq. (9)] are used. As
a result, the image boundaries and the relative voxel
intensities of different brain tissues are important
image features. The amount of added noise does not

seem to play an important role. Both routines are
robust for various noise levels.
Assuming that our simulated PET data are suitable

for testing coregistration routines, we can consider the
rationale for using a manual segmentation to generate
the simulated PET images. As described above, SPM
uses its own noninteractive segmentation routine to
generate an emulated PET image, whereas AIR seg-
ments the MR image into different intensity partitions.
We did not choose the same noninteractive segmenta-
tion of SPM for generating the simulated PET images,
but chose a manual one, since we wanted to carry out a
validation of the whole SPM routine, including its
preprocessing segmentation step. Moreover, the cross
validation would have probably been biased in favor of
SPM if we used the same method to create the simu-
lated and emulated PET images.
Concerning scalp-edited MR images, the perfor-

mance of the AIR and the SPM routines seem to be
comparable. This shows that both routines reliably
solve the coregistration problem, if the MR image is
scalp-edited. It also indicates that the segmentation
process of the SPM routine works accurately on scalp-
edited MR images.
As stated above, the performance of the SPM routine

worsens if non-scalp-edited MR images are coregis-
tered. Visual inspection of the MR images shows that
the internal segmentation of the SPM routine misclas-
sifies a small part of the meninges as gray matter. This
most likely causes the observed decrease in perfor-

FIG. 2. Group pitch 2: Translational (mm) and rotational (degrees) errors for 32 simulated PET images, to which rotations around the x
axis (ranging from 0 to 15.5°) were applied. (Dashed line) AIR routine, (solid line) SPM routine with scalp-edited MR images, and (dotted line)
SPM routine with non-scalp-edited images.
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mance compared to coregistration based on scalp-
edited MR images.
From Fig. 2, one can also see that at least some of the

parameters are highly dependent on each other. This is
because the primary aim of both coregistration routines
is to match the outer brain boundaries. In the figure, it
can be seen that the SPM routine based on a non-scalp-
edited MR image makes relatively large errors on the y
and z translation and the pitch. This combination of a
positive pitch, a positive y translation, and a negative z
translation error is a suitable parameter combination
to preserve the matching of the outer brain boundaries,
although the overall error is relatively large.

CONCLUSION

In this paper, we showed that the routines examined
reliably solve the MRI to PET coregistration problem
for simulated PET data. Although the study is limited
in the sense that we used simulated PET data, this
work gives to the functional imaging community a
sense of the coregistration errors that should be ex-
pected using the two methods reviewed and provide a
cross validation of these algorithms and their implemen-
tation.
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