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Chapter Three

Current Methods for Testing
Statistic Images

Having formed a statistic imagghe final difficulty in the analysis of a functional
mapping experiment is assessind:=xtreme voxel statistics indicate evidence against the
null hypothesis at that voxdbut how extreme isignificant? In seeking ttest statistic
images athe voxel level weare presented with a large npi# comparisons problem,
which is the subject of the remainder of this thesis.

In this chapter the current methods éssessing statistimagesare reviewed. The
necessary terminology and theory is introduced, and the methods expouswuféciemt
detail to enable their implementationsAt ofsimulated Gaussian statistisages is used
to illustrate the approacheshich gives an indication ahe size of eachtest under
idealised conditionslhe chapter closes witinalyses of &€ET data setising a variety of
methods. Some idea tfe relative power of the testfin 2) can be gleaned from the
simulation study presented in the Two-Stage chapter (ch.4).
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96 Chapter Three: Current Methods for Testing Statistic Images

3.1. Preliminaries

3.1.1. Multiple comparisons

Families of hypotheses

We have a nulhypothesis, I for each voxek. We wish totest thesdwypotheses
whilst controlling the probability of falserejection forany voxelhypothesis. In the
language of multiple comparisofidochberg & Tamhane, 1987) we havdaaily of
tests, a‘collection of inferencegor which it is meaningful tdake into accounsome
combined measure of errors”. Tpbability of falselyrejecting any voxehypotheses, a
Type | error, is then thiamilywiseerror rate KWE).

Denote by K, the combined voxel hypotheseasver the intracerebraloxels
W={1,...,K}, the omnibusnull hypothesis. Themnibus hypothesis the intersection of
the voxel hypotheses, and tsue if and only if the voxel hypothesesre all true.
Rejecting any voxel hypothesis implies rejectiothefomnibus hypothesis. Rejecting the
omnibus hypothesignplies rejection of some (unspecified) voxel hypotheses. Fite
for a procedure is then simply the probability of falsely rejectigg H

Definitions: Size, level, valid, conservative, power

The size of a test is therobability of Type | errorThe level of a test is the
specifiedmaximumprobability of Type lerror (usuallydenoted byx). A valid test has
size atmost thelevel. Anexacttesthas size equal tine level. A conservativeiest has
size much less thathe level. Conservativéestsusually havdower power than exact
tests, where the power of thest is theprobabilitythat the testorrectly rejectsgiven a
particular departure from the null hypothesis.

For multiplecomparisons problems, there &n® forms of control offamilywise
error, weak and strong.

Weak control over FWE: “Omnibus” tests
Weak controlover FWE simply requires that theest of theomnibus hypothesis is

valid. That is, the probability of “rejecting” a trugyHs at most the given levet
Pr(“reject H,"|H,,) < a (30)

In the context of an activation study, with voxel hypotheses of no activatioat at
voxel (however expressedhe omnibus nullhypothesis is of “no activation ahy voxel
in the volume of the brain under examination”. Evidence agaitise null hypothesis
indicatesthe presence ofsome activation somewherdjut the teshas ndocalising
power, in that theType | error forindividual voxels isnot contrtied.#° (If the ommibus
null hypothesis has been rejected, then any set of voxels could be declared as “activated”.
Weak control ofFwWE is maintained since voxelsre only declared activated if the
omnibus hypothesis is rejected.)

These tests are known amnibus tesissince they assesghether there is any
evidence at all, anywhere, agaitis¢ omnibus nullhypothesis. Thewre useful in the
present contexivhen interest isot in thelocation of some effect withithe brain, but
whether there iany effect at all. linterestlies in reliablylocating an effect, then test
procedure with strong control ovewe is required.

40¢_ocalising power, is not an accepted statistical term, but it is widely used pEtitemmunity.
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Strong control over FWE: “Localising” tests

Strong control oveFWwE requires thatwe is controlled nojust under K, when
all the hypotheses atmie, but undeany selection oftrue hypotheses. Thas, for any
subset U of the intracerebradxels (withindices in) W,the correspondingubfamily of
voxel hypothesesre testeavith (weak) control overrwe (eqn.31).Clearly strong
control implies weak control.

Pr(“reject H,"|Hy) < o for any UJW. (31)

Thus, for any region of thebrain defined by voxels U W, for which the
correspondingmnibus hypothesis lfis true(meaningthe voxel hypotheseareall true
in this region)the testejects H, (by rejectingone or more of theoxel hypotheses)
with probability atmosta, regardless of thiguth of hypotheses for voxels elsewhere in
the brain. A test procedurevith strong control overwe has localisingpower, and
enables the results of the tests at individual voxels to be reported.

Adjusted p-values

In most cases it is possible to computedjusted p-valu,el5k, for eachtest of H,,
such that thedecision to reject [1for a testwith FWE=a is obtainedmerely by

comparing|5k with a. These adjuste@-values can then bdisplayed in an adjusted

p-value imagetp5 = (|51,...,|5K). Formally:

I5k =inf{ a | H is rejected atwE =0 } (32)

That is, for a particular multiple comparisopsocedure, the adjustegtvalue for
hypothesis Kis the smallestt such that i is rejected by the test e = a.

Often it is expedient to think of multiple comparisons procedures in terms of
p-value adjustment. The use of adjuspedalues rather than &st does noforce a
particulara on the consumer of theeport, and allowghe relative significance of
different regions to beasilyseen. Ap-value is often preferable to a statisso)ce the
consumer isi0t left to account for theull distribution. Adjusteg-values argreferable
to unadjustedp-values sincethe consumer isot left to account for themultiple
comparisons problem.

Subset pivotality

The distribution of thevector P has thesubset pivotalityproperty if the joint
distribution of the subvectoPg; k 0 U) is identicalunder the restrictions fand Hy
for all subsets W W with H, true. (Condition 2.1 in Westfall & Young, 1993.)

For statisticimages from activation experiments, tmsplies that the p-values
computed for non-activated regions are unaffected by the presence or absence of
activation elsewhere.

3.1.2. Random fields

Definitions

A random fieldX(x), is a stochastic process whotene” parameterx, ranges
over some set moreomplicated than the reahe. Usually thisparameter space is a
subset of Euclidea®-space,dP. If every possible realisatiod(x) of the field is a
continuous function of for all points ofthe parameter space, then stall refer to the
field as acontinuous random fieldf the parameter space is sofimete (or countably
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infinite) subset of1P, then we shall refer to the field adiacrete random fieldWe shall
only consider real valued univariate randbetds, whereX(x)J. Our parameter space
will be theimagespace when considering continudigtds, andthe set olvoxel centres
{xXdkow when considering images as discrete fielder rigorous definitions, see

Adler (1981).

Thefinite-dimensional distributionsf a fieldare thgoint distributions ofX(x) at
any finiteset of pointx. A randomfield is weakly stationaryor weakly homogeneous
if the marginal distributions athefield at anytwo pointsareidentical. Ifthe covariance
between thevalues ofthe field at anytwo points is dunction only ofthe displacement
between théwo points, then this function the covariance functioror auto-covariance
function A random field is strictly stationary (or strictly homogeneoisif the
finite-dimensionaldistributions aradenticalfor all sets of pointselated by a common
displacement: That is, Pf{x1)<Cy,....X(X)<C} = Pr{X(xq+ X)<Cq,... . X(X)+ X)<c,} for
any set of pointx, Xq,...,X, and any set ofreal numbers. If thdinite-dimensional
distribution of thevalues ofthefield at anytwo points is dunction only ofthe distance
between the two points, then theld isisotropic. Two fields areidentical randomfields
if the finite-dimensional distributions are identical for both fields.

Gaussian Fields

A random field X(x), is a Gaussian random fieldf the finite-dimensional
distributions aremultivariate NormalClearly the field is weaklystationary if themean
and variancare constant foall pointsx. Thefield is stridly stationary if the covariance
between thevalues ofthe field at anytwo points is dunction of thedisplacement
between the points, and isotropic if the covariancenig a function ofthe distance
between the points.

X2, F and t fields

Adler (1981), definesx?, F andt fields in ananalogous way tdhe univariate
definitions. If X(x), X1(X), ..., Xn(X), Y1(X),-..,Ym(X) xOwOOP  are independent,
identically distributed, (weakly) stationary, Gaussian randietds with zero mean and
unit variance then:

U(x) = z:n: . Xi(x)2 is ax? field with n degrees of freedom
(defined only fom > D)
Dy X0
F(x) = W is anF-field with n,mdegrees of freedom,
(defined only fom + m> D)

X(x)

and T(x) = = is at-field with m degrees of freedom.
[ 2 iy Yi0%m

That thefields havethe implied marginadistributions iseasilyproved (Adler, 1981). If
all the component Gaussifields are strictly stationary or isotropic, then ftfe F andt
fields are said to be strictly stationary or isotropic respectively.

Statistic images not discrete random fields
Recallthat statistidmagesaresaid to be of a certain (univariate) distribution if the
marginal distribution othe value at any voxel hakat univariate distribution under the



Preliminaries 99

omnibus nullhypothesis. This reflectthe voxel-by-voxel approach wherainivariate
normality is assumed for each voxesF value individually.

From the above definitions, it is clear that Gaus%ank & t statisticimages are
not discete random Gaussia(?, F ort fields, unlesgthe cBF imagesare assumed to
have multivariate normal distributions.

3.1.3. Simulated Gaussian statistic images

Various methods have been developed to addiess multiple comparisons
problem in this imagsetting.Until recently,these methods were restricted to statistics
whose distribution was Gaussian underrtblt hypotheses, as these are mamgenable
to probabilistic analysis.

We shallillustrate the methods discussedhis chapter bypplying them to a set
of simulated standard Gaussian statistic images, the form of which we now describe.

Smoothing filter

Standard (zeranean, unit variance) Gaussian statisiageswere simulated by
smoothing a white noideeld with a Gaussian kernel with variance-covariance matrix
(Seeappendix B:4for a discussion of Gaussian kernelhijs impliesthat theGaussian
statistic image is a strictlystationary discrete Gaussian random field, wailto-

correlation function RY() = expthT(22)1h/2) /+/(2m)P |2Z| (appendix C:5), point
response  function equal to thefilter kernel (centrally inverted)

f(x) = exp(x'Z"1x/2) /+/(2m)P [2], and variance-covariance matrix of partial derivatives

A = (22)1 (appendix C:7). The Gaussian smoothing kernel chosen was spherical, with a
FWHM of 10mm, s& is:

BOZOO

z=po e 1%258'n<2>

Identification of intracerebral volume

A three-dimensional imaggpace= of dimensions 130mri74mnx104mm was
considered, partitioned into $57x26 voxels of 2mm2mnmx4mm. The Talairach co-
ordinate system waadopted, graduated millimetres. Tomimic real statisticimages
only voxels W corresponding to the standaiidhlairach intracerebral volumeere
considered. These voxels were identified as follows.

Stereotactically normalisedsF images from a number of subjeetsre obtained,
resampled tohe currenfTalairach voxellationfFor each subject, thetracerebral voxels
wereidentified asthose where thecBrF was greater than a third of theeximum CBF
for that subject. A (conservativestimate of the intracerebnrabxels ofthe Talairach
brain is therthe intersection of the sets of intracerelboadels for each subject, i.e., the
voxels identified as intracerebffal all the subjectsK = 72410voxelswereidentified as
intracerebral voxels.

White noise images

White noise imageswvere generatedassigning each intracerebral voxel an
independent realisation from a standard Gaussian distribdins.white noisémage
was then smoothed and normalised.

Smoothing and normalisation
Sincethe white noisémage isdiscrete, with voxel centres arranged in a regular
lattice, the smoothing process can ibglemented as a movingverage filter (see
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appendix B:2). The filter wasomputed with weights equal to thalues ofthe filter
kernel at thesoxel centres. The white noiseagewas then smoothed with thisoving
average filter. To avoid edge effedtsg movingaverage filter watruncated at the edge
of the image (see appendix B:3).

The smoothed white noisemagewas then normalised so thraarginally, each
voxel was a standard univariate Gaussian variate.thByadditivity property of
independent Gaussian variates, tharginal distribution ofany particular voxel after
smoothing is Gaussian, wittero mean, and variancthe sum ofthe squares of the
smoothing weights of thenoving average filterused at that voxék To obtain the
simulated standard Gaussian statistiage each voxel valugasdivided bythe square
root of the variance. Thus thield is not strictlystationary near the boundaries of the
intracerebral volume.

Example image
Fig.42 depicts orthogonal sections of sanulated Gaussian statistimage,
generated according to the above prescription.

Coronal Section — y=-18

Colour Scale

Transverse Section — z=0 Saggital Section — x=0
| *
I
| B
'Ji *

-100 __ ™=
-20 0 20 40 60
Z

o | = |

50 501

&

=100 1

Figure 42
Orthogonal sections of a simulated standard Gaussian statistic image.

41Care must be taken to includmly those weights used for voxetear theboundaries of the
intracerebralvolume wherethe filterwas truncated. Fowvoxels near the centre of the intracerebral
volume, where little truncation takes platiee sum of squares of the weightas found to bgery close
to the theoretical variance of 1?(:23/2 V|Z| derived in appendix C:5
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3.1.4. Possible directions

If we assume multivariate normalifgr the €BF images, with an appropriate
model forthe mean, then, as we saw i2.8., multivariate procedures are precluded

because the estimated variance-covariance rrfatsisingular.

The ICBF images can be assumed to be stristigtionary, so that thauto-
covariance function is a functiamly of the displacement betwedwo voxels. From an
estimate of the auto-covariance function,irareritible estimate oz could be formed,
and a multivariatanalysis employedr, the cBF imagescould be considered as lattice
representations of continuous randidgtds with thesame auto-covariance function, and
assessed using results from continuous random field theory. The former approach has not
been attempted as yet, since the latter has proved fruitful.

The simplestapproaches consider thiexelsindividually using univariate methods,
and take account of theultiplicity with a multiple comparisons procedure. These
approaches only require an assumption of marginal univariate normality.
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3.2. MCP Tests

3.2.1. Bonferroni

If {A |} kow is any countable set of random events, then Bonferroni showed that:

1- 5 PEAEE P00 A) (33)

kOwW

commonlyreferred to as thBonferroni inequality though it isonly one case of a set of
inequalities. (See tHencyclopaedia of Statistical Scienwel.l1.)

Bonferroni correction for a family of tests

For afamily of tests ofnull hypotheses | let A, be the event that theest
correctly accepts |l by finding insufficient evidencagainst arue H, at FWEe level a.
The right side of eqn.33 is théme probability that all tests correctly accepgiven that
the omnibus hypothesis His true. This must begreater than ox for alevel a omnibus

test. Pr(_Ak) is thelevel of the test of |l Setting this toxy, then we see that weak

control offamilywise Type | error ismaintained at levek if the o, sum to less thaa,
since (from eqn.33):

Pr(“reject” H,, | Hy) = 1-F’I(ﬂkm, Ak) < ) 0k (34)

kOwW

Strong control ofFwE is also maintained by this choice @f, assuming subset
pivotality: Subset pivotality states that frealue for H is unaffected by theuth of H
for kzkDOW. Therefore forany set UJW, the probability of falserejection of H is at
mostzkDU o (by egn.34)which is inturn at mostszW O (sinceay = 0 O k), which is

itself at mostx by choice of ther,.

Usually theay are chosen as/K, whereK is the number of tests (tleardinality of
W), giving what's become known as tBenferroni correctiorf? Thelevel for eachtest
is simply the choselevel ofthe omnibustest,divided bythe number oftests. If the test
statistics all have the same distribution undgr tHen the Bonferroni correctigives an
identical critical valudor each testThetest isthen asingle threshold testhe statistics
for eachtest arethresholded at theritical value, and hypotheses with suprathreshold
statistics are rejected,jis accepted only if no suprathreshold statistics are found.

Bonferroni single step adjusted p-values
If Py is thep-value for H,, then eqn.32 leads ®onferroni single step adjusted
p-valuesas:

P, = min{KxPy, 1} (35)

42prior knowledgeregarding theexpected location of an activatiaan be utilised by choosing thg
such that they are larger in this region, resulting in a test with increased power for the region.
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Conservative

For independent events the Bonferronequality isquite tight, even for large
numbers of eventgyiving omnibustests forfamilies of independentests with size
approaching the level.

For many dependent events, theequality can be extremely slack. Since the
statisticimagesare smooth, tests aeighbouring voxels will béighly correlated (in
terms of theip-values), the inequality (eqn.34) will be slack, and the omnibus test will be
very conservative, with actual size much less than the specified l€vel

Example
For thesimulated standard Gaussian statistic imakjes,72410. TheBonferroni

correction tests eacloxel hypothesis [d p =0 against_l-lt: My > 0 for Z,~ N(p,1) at

a levela/K, giving critical threshold®-1(1-a/K) = 4.8277 (to 4dp) foo = 0.05. This
threshold is exceeded inly 179 of the 1D simulated statistic imagegiving 95%
confidence intervalqj) for the actualsize of the omnibustest as (0.0157, 0.0201)
(to 4dp,usingthe normal approximation tthe binomial), wellbelow the desiretbvel of
a.

3.2.2. Other MCP methods

The Bonferroni method is themplest ofthe single-stepor simultaneousnultiple
comparisons procedures, called becausall the hypotheses are teswdhultaneously
in a single step. Othaeimplisticmethods ignoringhe correlation between the tesisch
as the Sidak method based on the SitEddeo inequality, are alscextremely
conservative in theeT scenario. Improvements on the single-step methodsdtiestep
or stepwisemethods which test the hypotheses in a ceotaar,usuallythe order of the
(unadjustedp-values.

For example the simplest stepwisenethod is the step-dowest ofHolm (1979),
which is based othe Bonferroni correction: Here the hypotheses are ordered according
to their (unadjusted)-values, from smallest targest: H),...,H() with corresponding
p-valuesP(1) <...<P(). H(y) (and hence ) is rejected ifP(;) < a/K. The testthen
steps down, rejectingkj if and only if all Hyy for k' < k have already been rejected, and
Py <a/(K-k+1). Any untested hypotheses are accepted. The method contvels
strongly. In essence, at each step a Bonferroni correction is used fountber of
remaining hypotheses. This method dearly more powerful for testingndividual
hypotheses than the Bonferroni method, but for testingrtivebus hypothesis ti the
methods are identical.

Thus, step-down methods are as conservative as the multiple comparisons
procedures orwhich they are based. For testing statisttages frompPeT, these
simplistic multiplecomparisons methods avery conservative, and have Iqvower.
Typically, they will only pick out large activations that are obvious to the naked eye.

43This isfairly intuitive in the current context of assessing images of statistics. At one extreme we have
independentoxel values irthe statistic imagegndhence independent tests. In tb&sethe Bonferroni
inequality is quitetight. At the otherextreme is thecase wherghe voxel valuesare completely
dependent. Then thereeassentially only one tesind theBonferroni correction testhis atlevel a/K,

rather than att as would be appropriate. The actual situation lies somewhere between these extremes.
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3.3.Random Field Approaches

To obtain moresensitivetests, it isnecessary ttake the correlations between the
voxel tests into account. Tha, toaccount for the smoothness in the statistiages.
Fristonet al (1991d), andVorsleyet al (1992), independentlyought to take account
of this smoothness by consideritite statistigmage as a latticeepresentation of an
underlying continuous random field, and applying results from random field theory.

Random field modelling

If we assumethat the €BF imagesare multivariate normal, therthe image
regression is a multivariate regressite fitted parameters anaultivariate normal, and
theunivariate statistiiomagescomputed are discrete randdields. Assume alsthat the
rCBF imagesarestrictly stationary, sthat the statistiaomagesare also strictly stationary
under H, with covariance between values amby two points &unction of the
displacement between the points. Then, if the voxelsnaaéenough, the statistimage
may beapproximated by a homogeneous continuous rarfadanZ(x), with thesame
(null) marginal distribution, covariance functiand expectatiordefinedfor x£JQO3,
HereQ is the subset dfi3 covered by the voxels in W.

3.3.1. Worsley’s Euler characteristic method

Worsleyetal. (1992), appliedhe results oAdler (1981) and co-workers on the
theory of upcrossings in randofmelds, to obtain ahresholdwhich is exceeded by a
homogeneous continuous Gaussian rantielchwith probability approximatelg. This
threshold is then applied the statistiamage, whosenaximumvalue is assumed to be
distributedsimilarly to the maximum ofthe continuous field. Voxels with suprathreshold
statistics have their null hypotheses rejected.

Overview of the theory

Briefly, the excursionset of Z(x) over a compact subs€@ of 0P, above a
thresholdu, A,(Z,Q) = {x0OQ:Z(x)=u}, is characterised by the Eul@r Euler-Poincaré)
characteristix(A,(Z,Q)). This essentially measurése number of isolategarts of the
excursionset, less thenumber of holes (see AdI&981, 84.4, p9@4. For a three
dimensional homogeneous Gaussidreld with zero mean and unit variance, the
expectation of the Euler characteristiciginally due to Adler and Hasofer (1976), is
given by Adler (1981, Th.5.3.1, p111) as:

EIX(A(ZQ)] = MQ)AM22r)4(u? -1) exp(1/2) (36)

HereA(Q) is the Lebesgue measurefil3, thevolume ofthe regiorQ. Q is assumed

to be a compact, convex subsetf whose boundary hagroLebesgue measurd\||

is the determinant of the X3) variance-covariance matrix of partial derivatives of the
randomfield, with respect to the co-ordinate directions (eqn.38)js parameterises the
smoothness of the field.

Adler showedhat as the thresholdincreases, the holes tend to disappear and the
Euler characteristic tends towards ti@nber of local maxima-or large u, near the
global maximaZ,5y the Euler characteristic is 04f,5,& u and 1 ifZ, 54> u. For high
thresholds; PHq 45> U) = Prx(A,(Z,Q)) > 1)= E[X(A,(Z,Q))] and the expected Euler

44adler definesthe pT (differential topology characteristic, which is shown to be the Euler (or Euler-
Poincaré) characteristic provided that the excursion set does not touch the boundary of tif& region
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characteristic approximates tpevalue forZ,,,, Setting the righside of eqn.37 ta
and solvingfor u gives a critical threshold, suitable for devel a test forlocating

regions ofQ where the field departs from zero expectation.

This threshold is applied tthe (standard Gaussian) statigti@ge, giving atest
with (approximate) control ofwEe in the weak sense, assing the maxima of the
continuousfield and the discrete statisimage are similarly distributed. Assuming
subset pivotality, it iseasily seenthat strong control overFwEe is maintained, since
subsets of W correspond to regions with volume less than tfat of

D-dimensions
For aD-dimensionalhomogeneous continuous Gaussian randleith with zero

mean and varianag?, defined orQ, a compact, convex subset@P whose boundary
haszeroLebesgue measure, Adid976)derived the expected Euler characteristic for
excursion sets above a threshaldgiven by Adler (1981, Th.5.3.1, p111) as:

EX(AZ O] = MQAE(2r) 7 07D exif - 22) Ry (u) (37)

D-
T 2] IED 1D 2j,,D-1-2
where RB(u) = Z |2‘ 2i u
Thus, the approach &Vorsleyet al. (1992) can bapplied to Gaussian statistinages
of any dimension/ here is thédxD variance-covariance matrix of partial derivatives of
the field with respect to the co-ordinate directions:

g val?%,|  cof?, %2]

N\ :EbO\/{aY 9y ] va{a aXZ]

% 0% 1 /0Xp

(38)

|jmj|:||:||:|

wherex = (X1, X9,..., Xp)

Results forx2, F and t fields

Recent workhas extended these resultsxfo F andt fields, removing the
requirement for Gaussian statisimages (Worsley,1994a). These are presented in
appendix D.

Example
The simulated Gaussian statistitages described in38L.3. arg(by construction)
strictly stationary discrete three-dimensional Gaussian rarfédds, with variance-
covariance matrix of partial derivativAs(22) 1. £ is the variance-covarianceatrix of
the Gaussian smoothing kernel used. Khe 72410 intracerebraloxels represent a
volume of 1158560m Substituting these valuésr A andA(Q) respectively in eqn.36
we find that the expected Euler characteristic ds= 0.05 at critical threshold
o = 4.6784. Of the 1O simulated statistic image829 hve maximaexceeding this

value. A95% ci for the Fwe is (0.0300, 0.03583) to 4dp, computesing the normal
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approximation to theinomial. Thetest isconservative, witlfwe ratebelow the desired
levela.

EstimatesA of the variance-covariana@atrix of partial derivativeg\ can be
obtained by computing numerical derivativegha simulated statistiomages and then
taking their variances and covariancasross the statistiemage. (Estimation of
smoothing is discussefdlly below, in 83.3.5.) For each of tlemulated images the

. . A . . .
smoothness was estimated. Converting e&cto the estimated variance-covariance

matrix, ﬁ, of the point response function (assumed Gaussian in sgi;iapefz (2//\\)'1
(appendix C:7). Expressing that in termsFafHM in the axial directions (se@ppendix
B:4), we findthan the average estimatedH™m is 10.4mnmx10.4mnx10.8mm. Increases
in smoothness lower thalue ofthe expected Euler characterissitice \| decreases.
So, ifthecritical threshold is calculatddr eachsimulated image using an estimate\of
derived fromthatimage,the tesimay beexpected to bslightly lessconservative. The
critical threshold appropriate for a smoothness a0.4mnx10.4mnx10.8mm is
Uy = 4.6415, avalue exceeded ianly 366 of thesimulated images. R5% ci for the

FWE rate of a test on the simulated data with this threshold is (0.0335, 0.03969).

The empirical distribution functioneQF) of themaxima ofthe simulated Gaussian
statisticimages igpresented irfig.43. The approximate cumulative distribution function
(coF) of the maxima byWorsley’'s method ighe compliment ofthe expected Euler
characteristic, 1-B[A-(Z,Q))]. This is superimposetbr the theoretical and average
estimated smoothness. Ttap 10% of theeDF is also shown, with a pointwise 95%
confidence band fothe truecDF, computedusing the normal approximation to the
binomial.
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Figure 43

EDF for the maxima of the simulated Gaussian statistic images, frém 10
simulations. Superimposed is the compliment of (one minusgxtpected
Euler characteristic, which approximates dm at highvalues, computed
with both the theoretical smoothness of 10mmHm (dashed linepnd the
mean estimated smoothness of 10.4hth4mmx10.8mm (dot-dash line).
The top 10% of theeDF plot on theleft is given onthe right, with a
pointwise 95% confidence band for the tare.
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3.3.2. Friston’s “Bonferroni” method

Brief overview of the theory

Fristonetal. (1991d), workedwith two dimensional slices ofhree dimensional
standard Gaussian statistic images. They assumed that these planaisiagistcould
be approximated by thield formed by convolving awo dimensional white noise
Gaussian field, with a bivariate Gaussian kernel, with variance-covariance matrix
> :32I2 (for I, the 22 identity matrix). Usingthe onedimensionaltheory of level
crossings in stochastic processes, they obtained the approxirobability that the
centre of arelliptical region above a threshotd occurs in the area corresponding to a
single pixel, as:

1
~ 3211 (s/ h)2 expE? (1-0(c))

Hereh is the length of the side of the (square) ptkdlhe event that a pixel with/Hrue
is the centre of aelliptical suprathreshold area is then taken to befdélse positive
event, a rather heuristic arrangementsifultaneoudest for all pixelhypotheses is
obtained by using a Bonferrooorrection for thenumber of pixels irthe planaimage.
The threshola, is found by equating the above expressioa/t.. Ky is thenumber of
intracerebral pixels in thg@lane under consideration. Agaithe smoothness, is
replaced with an estimate. Thestwas applied plane by plamgthout consideration for
the multiplicity of testingmanyplanes. Results wereportedwith a caveat like “dalse
positive was expected once in every 20 planes for tests at significan@e #0)5”.

P (39)

3.3.3. Transform functions

To assess thsignificance ofyx?, F andt statistic images, Fristatal. (1991)
advocated transforming the statistic image to an equivalent Gaussian statistidmsage.
is achieved by replacing each voxel statistic with a standard Gaussian ovdihate
identical probability of beingxceeded: Ik is drawn from a distribution witGumulative
Distribution Function B, then theequivalent standard Gaussian variae=sb 1(F(x))

. ®1(F(+)) is thus a function “transforming” a random variable fame distribution to a
standard Gaussian distribution, and has become k(iowaT) as atransform function
(See apendix E for details.) Wehall refer to such transformed statistinages as
Gaussianiseqt?, F ort statistic images.

The transform function can bmodified so thattwo-sided hypotheses can be
considered. This is necessary sinceomnty havetheory for one sidetests of(strictly
stationary continuous) Gaussian randaias. A Gaussianisedstatistic for a two-sided
hypothesis igshe standard Gaussian ordinat®r which the probability of exceeding, is
equal to theprobability with whichthe t-statisticx is exceededh absolute valugby a
random variable of the specified nutlistribution. I.ez = ®1(1-2(1-F(x|))), where F(

*) is thecumulative distribution function &tudent’st-distribution (with the appropriate
degrees of freedomJhis is equivalent to squaritige t-statistic, and “transforming” the
resultingF-statistic.

Although the resultingsaussianised statistimage is Gaussian at every voxel, it is
not a disrete Gaussian field, sincthe condition ofmultivariate normal finite-

45Friston works inunits of pixels, so in Fristoet al. (1991d) eqn.39 appears withas one. For
generality, we shalthoose to work irthe units of the imagspace (which may be chosen to be pixel
units).
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dimensional distributions 1ot met. (Neither is the auto-covariance functr@tessarily
Gaussian in shape, as is often assunidiks)is so even ifhe original statistidmageis a
discrete randomfield. The consequence of thdgparture from assumptions is
demonstrated byVorsley(1994b) fort-fields simulatedover a 1000cosolume, with
smoothness oROmmFwHM. For anominal 0.05 false positiverate over a 1000cc
volume, Worsley’'sest on theGaussianisettield gave a false positivate of 0.069 for
t-fields of 40 degrees of freedom, and 0.055-fazlds of 120 degrees of freedom.

Consideringt-statistics, the transform function tends (pointwise) toideeatity
function as the degrees of freedom tendhtinity. Thus, fort-statisticimagesthat are
discrete randonfields,the resulting Gaussian statistitage can bapproximated by a
discrete Gaussidreld if the degrees of freedom drngh. Worsley(1994b) suggests that
the degrees of freedom should be greater than 120.

3.3.4. Comparison of Friston’s and Worsley’s methods

The unit variancdield obtained by convolving a white noise Gaussiad with a
Gaussian kernel with variance-covariance mafixs a strictly stationary continuous
Gaussian randorield with A = (22)1 (Adler, 198136. Thus, Fristoret al (1991d) are
considering an isotropic strictly stationary continuous Gaussian random witid,
Gaussian covariance function, akd= (25) 2 1,. From eqn.39 Friston’s-value for the
maxima in a plan&},,,, after Bonferroni correction is:

o ~ K, X pixsizé _TIMQp) N2 (2m)2
Primax>C) =3on 2 exp@) (10(0)) ~ 4 exp€? (1-0(C))

(40)

HereQ is the intracerebral area in the plane, Epdhe number of voxels inhe plane.
Using the approximation ®(-c)=(1-®(c))=(2m) Y2 exp(c¥2) /c for large c,
Worsley(1992) showed thathis p-value was a factor ofiY4 smaller than the
corresponding expected Euler characteristic.

The result of Worsleyetal. (1992) is more rigorous than that of
Fristonetal. (1991d), is not restricted two dimensionsjsotropy or a Gaussiaauto-
correlation function. However, fom2work, bothgive approximately validests, as we
shall now see.

Example

To illustrate these two-dimensional methods, considsrthe Ac-pPcC plane of the
simulated Gaussian statistic images. Kag= 4079 intracerebratoxels in this plane
constitute admm thick slice ofthe imagespace, with faceparallel tothe x-y plane of
areal16316mm. Ignoring the thirddimension,the expected Euler characteristic for a
two-dimensional strictly stationary continuous standard Gaussian rdreddrifeqn.37)
with this area andwHm of 10mm is equal tor = 0.05 afcritical thresholduy, = 3.9299

(to 4dp). This value is exceeded kiye maximumstatistic in theac-pc plane 0f436 of
the 1@ statistic imagesgiving a 95% ci for the Fwe of (0.0402,0.0470) to 4dp,
computedusingthe normal approximation téhe binomial. The critical thresholébr a
level o = 0.05 test byFriston’s method (eqn.40) #ightly lower, atcy = 3.8796 (to

4dp). This level isexceeded by thmaximumstatistic in theac-pc plane 0of526 of the
10* statistic images, giving (0.0489,0.0563) as a 858r theFwE.

If the mean estimated in-plane smoothness of 10.4wmm is used, then the
critical valuefor Worsley’'stest drops tal, = 3.9085 (4dp), aalue exceeded iB01 of

46see appendix C for a summary of results.
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the 1@ simulations, givind0.0465, 0.0537) as a 95@b for the FWE. Friston’s method
gives a critical threshold af, = 3.8580 (4dp), exceeded in S§ithulated imagegiving

95%cI for theFwE as (0.0522, 0.0598).

The top 10% of theeDF of the maximumvoxel value in this planéor the 160
simulations is presented in fig.4dgetherwith a pointwise95% confidence band for the
true CDF, computedusingthe normal approximation to théomial. Superimposed are
the theoreticatDFs of Fristonet al (1991d) andNorsleyet al (1992). The agreement
between theDF and the theoreticalDFs is remarkable-or critical thresholds in the
range depicted, [3.5,5], the ratio Bfiston’s p-value (egqn.40) to the expected Euler
characteristic (eqn.37) is close to the valug/éfcomputed by Worslest al. (1992) .

1-
0.991
0.98
0.97
0.96

é 0.95-

Q0.
0.94
0.93
0.921

0.91

0.9 T T |
3.5 4 4.5 5

AC-PC plane Zmax

Figure 44
Top 10% of theebr of the maxima in thexc-pc plane of the simulated
Gaussian statistic images, from #1@imulations, with pointwise 95%
confidence band (dotted lines) fitre truecor, computed usinghe normal
approximation to the binomial. Superimposed is the complimer{prod
minus) theexpectecEuler characteristic (dot-dash line) for m f&ld of this
area (eqn.37)Also superimposed (dashdide) is thecpr as predicted by
Fristonet al (1991d) (1-eqn.40). Both theoreticalrs were computed with
the theoretical smoothness corresponding to a Gaussian nesbnse
function of 20mnFwHM.

3.3.5. Estimation and specification of smoothness

To apply these randomfield methods, an estimate of\[}2 is required,
necessitating the estimation @, the variance-covariancenatrix of the partial
derivatives of the field, or of the component fields in the cagé, &f or t fields.

Within image estimation (Friston)

The most common approachtilised by Fristoretal. (1991d), is toestimate
smoothness withithe statistigmage. Numerical partial derivativese computed for
each voxel location, and their variances and covariances taken across all voxels.

For strictly stationaryx?, F or t fields, an estimate ahe variance-covariance
matrix of partial derivatives of the component fields must be derived from the (estimated)
variance-covariance matrix of partial derivatives dhe statistigmage.

Adler (1981,p.169) notes that for a chi-squared field, teriance ofthe partial
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derivatives relative tdhe variance ofthe field is twice that of its componerftelds.
Worsleyetal. (1992) derive a relationship betweehe variance-covarianeeatrix of
partial derivatives of &field and its Gaussianised coergart. Asimplification of their
argumentyields the relationship betweerthe variance-covarianeeatrix of partial
derivatives of at-field and its component field, and gs/en in appendix GFurther
relationships can be derived from Worg|&994a).

Strong control?

Departures from the null hypothesis due to activgbole-activation) will appear
as increases (decreases) in the statistic image, autherical) partial derivatives of the
statisticimage will be increased in théocality of the activation. Thegariances and
covariances of the partiaerivatives will therefore bereater than were there no
activation present, and smoothness will be underestimated. Swbsktlity is not
maintained, even ithe distribution of a non-activat@art of the statisticimage is
identicalunder theomnibus hypothesis and the presence of activation elsewhere: The
p-values for voxelk with H, true will be greater in the @ence of an activation than
under theomnibus hypothesis\j. Thus the tesstill hasstrong control oveFwe, but
becomes more conservative, and less powesgulally activations arevery localised, or
perhapsdiffuse but of low magnitude, so tleffect on the estimated smoothness is
negligible.

Across image estimation from component fields (Worsley)

A more rigorous approach was advocated by Woedlay, (1992).A is estimated
for each voxelcross the componemhages from whichihe statistigmage is formed,
accounting forany change in meadue to activation (de-activation). Ttiariances and
covariances computed for each voseé then pooled ovell voxels to obtain an
estimate of the variance-covariamoatrix of partial derivatives dhe componertields,
assumed strictly stationary. S&@rsleyet al (1992), pp907-909 for details, whexas
estimated for a Gaussidreld of paired t-statistics computed with poole¢ariance
estimate.

Resels

Worsleyet al (1992) introduced the concept refsels or resolution elementsa
measure of th@umber of independent measurements in a strictly stationary standard
Gaussian randorfield with Gaussian point response functie®e). (The PRF for pre-
processedPET ICBF (rA) images is reasonably approximated by a Gausiggusity
function, particularly if primary smoothing with a Gaussian kernel is performed!) The
size ofthe PRFis usually specified iterms ofFwHM in the axial dimensionsEwHMy,
FWHM, & FWHM, respectively, anthe number of reselR in a volumeQ wasdefined as
the volume divided by the product of theHM:

R=A(Q) / FWHMy X FWHM, X FWHM,)

This is related to the variance-covariance matrix of partial derivatives of the field as
follows: If the PRF of the field is Gaussian, with variance-covariance mafix Then
(appendix B:4¥ is given in terms of thewHwm as:

2
_HWHMX 0 , 0 E 1
Z_H 8 FWHOM ! FWI—?MZZH8|n(2)

The field can be generated by convolvingvaakly stationarycontinuous white
noise Gaussian randofield (of appropriate variance) with a Gaussian kewit
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variance-covariance matr 4’ (This inturn implies,and isimplied by,the fact that the
auto-correlation function of the strictly stationary standard Gaussian rdmedns a
Gaussian kernel with variance-covarian@e (appendix C:5). Thushe assumption of
GaussiarPRrFis equivalent to one of Gaussian auto-correlation.)

The variance-covariance matrix of partial derivatives of a strictly stationary
continuous standard Gaussian randord fiformed by convolving a weakly stationary
continuous white noise Gaussian randiefd with a Gaussian kernel with variance-
covariance matriZ, isA = (22)1 (see appendix C:7). Therefore:

E/FWHMXZ 0 0 ]
A= 0 1fFwHm,2 O In(2)
3 o 0 1FwHwm,2

and
INY2 = (4In(2)P2 | FWHM, X FWHM, X FWHM,)

for D =3 dimensions, withthe obviousnodification for D =2 dimensions. Thus
(4In(2)P2 R= Q) INV2
Smoothness in terms of FWHM

As just discussed, if the point response function of a strictly stationary continuous
standard Gaussian randdield is a Gaussiakernel, with variance-covariance matkix
then A\, the variance-covarianaeatrix of partial derivatives athe field, isgiven by
A = (22)1. This result isoften used in reverse pecify smoothness in terms of the

FWHM of an assumed Gaussian point response function, as follows:
Suppose a strictly stationary continuous standardssgsu randomfield has

estimated variance-covariance matrix of partial derivat’?\veAssumingthe field has a

GaussiarPRF with variance-covariance mati this is estimated bﬁz (2//\\)'1. (Recall
this is equivalent to assuminigat thefield has Gaussian auto-correlation functath

variance-covariance matrixx2 It is common to considesnly the variances of the
numerical partial derivatives and assutiat thecovariances areero. (Equivalent to

assuming thathe PRFis ellipsoidal, with axes parallel the co-ordinate axes.) This
will be a diagonalDxD matrix of variances ithe axial directions. The smoothness is
then specified athe product of thewHwm in theD axial directions,FWHM, X FWHM,, X
FWHM,. FWHM is derived from a varianae? by FWHM = 0\/8In(2). (See appwlix B:4

for a review of Gaussian kernels avaHMm.) If the FwHM is thesame in each dhe axial
directions under consideration, then a sirglem is stated.

47Convolving a delta function with the filter kerngivesthe point response function. Thenvolution
also results in a central inversion of the filter kernel. Thus the point response function is equal to the
filter kernel, centrally inverted. In this case the filter kernel is symmetric.
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3.3.6. Discussion of random field approaches

There are many assumptions in the use of the randdield method of
Worsleyetal. (1992), bothimplicit and explicit. Difficulties with this approach stem
from the assumptions, so wsbkall begin bystating the assumptions, and then discuss
some of their infringements and implications.

3.3.6.1. Assumptions

The key assumption is:
» Under thenull hypothesis, thenaximumvoxel statistic irthe standaréaussian
(x4, F ort) statistic image, is distributed approximateilg same ashe maxima
of a strictly stationary continuous standard Gauss&nH or t) randomfield,
with (component fields with) variance-covariance matrix of partial derivaives
, estimated from the (component fields of the) statistic image.

This implies:

«t Under thenull hypothesis, the standard Gaussjeh E ort) statisticimage is a
realisation of a strictly stationary, discrete, standard GausgfarF(or t)
random field.

» The voxel dimensionsare small relative to the smoothness of tlield
(measured as thewvHwM of thePRA. This is so thathe statistidmage can be
considered as a good lattice representation of a continuous random field, where
the lattice is the set of voxel centres.

» Thedimensions otheimageare muchgreater than the smoothness of fiatel
(measured as thewHM of the PRA. This is so thathe variance-covariance
matrix of partial derivatives ofhe statistiamage can bevell estimated by
numerical derivatives.

Considering the formation of the statistic image, the assumption that the stadigéds
a strictly stationary discrete random field (), implies:

* The cBF (rA) images themselvesre discrete Gaussian randbetds, with
mean given bythe assumethodel (see ch.2), and variandenage
v =(0%,....0).

 The errorimages:aijq = (siqu,...,sijqK) (formed from the @BF (rA) images by
subtracting themean fromthe model, see ch.2) @mormalisation to unit
variance by division of each voxel value the (unknown) true standard
deviation gy, are strictly stationary discrete standdeero mean and unit
variance) Gaussian random fields.
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3.3.6.2. Normality

Univariate normality

That m images have normallgistributed voxel values under repeat scans on the
same subject undehe identical conditionswould appear to be reasonable. Filtered
backprojection giveseconstructeda images formed by multiple convolutions of the
Poisson VOR counts data,which themselves have high value€onsider the
reconstruction ofA value in a single voxebver repeat scans on tisameindividual
underidentical conditions (identical bloottaceractivity as a function of time, identical
scan protocol and cBF). An appeal to the Centrdlimit Theorem would suggest
normality for the distribution of the particulaoxel value, sincehe number ofvoRr
contributing to the reconstruction of aover a single voxel is great. Reconstruction and
primary smoothingvould reinforce this assertion. Since calibration ofto rCBF is
almost linear, (see ch.1gBF at a voxel(over repeat scans undeentical conditions)
may also be assumed normal.

Univariate normality: assessment usingQ correlation images

Various authors have illustrated the veracity ofuthigariate normality assumption
for each voxel, bymagingthe correlatiorcoefficient of aQ-Q plot for each voxel (as we
did for the “V5” data in 82.6.1.). As usual, there is greblem of multiplicity,and the
low power of tests due to theeallnumbers of replication®epartures fronmormality
in the extremdails ofthe distribution areirtually undetectable witlsmall samplesizes.
A general rule of thumb ishat more than 50 observations are requiretesd for
normality.

Thus, the results of such an assessment should be interpreted with caution.

Multivariate normality

An assumption of multivariate normality for reconstructedmages from scans on
the same individualinderidentical conditions isot soconvincing. Althoughhe number
of VOR contributing to the reconstruction of & over a singlevoxel isgreat, so is the
number of voxels. When consideritige reconstruction of an enti@age,the reduction
in dimensionality from the number bR to the number of voxels may lesufficient for
the asymptotic result of the (multivariate) central limit theorem to apply.

Again, primary smoothing would make the assumption less contentious.

Departures from Normality

It should benoted that it is in the extremiils of the distributiorthat the
assumption of normality is critical. It is here that departures from normality will greatly
affect the level of the tests.

3.3.6.3. Model assumptions

Adequacy of model fit was discussed in chapter 2. Henceforghallassumehat
the model fits, and thus that the error imagjgshave zero mean.

3.3.6.4. Strict stationarity of statistic images

That the errorimages &q) are drawn fromidentical multivariate normal
distributions seemanlikely, sincethe pattern ointer-regional correlations ofCBF in
different individuals is likely to be different.

Biological considerations aside,dtill seems unlikelythat the(normalised)error
imagesare strictly stationary. Curremtork by JBPoline indicateshat reconstructedar
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imagesare smoother towards the centre of the tomogmaplye space, in that the
variances ofthe partiaderivativesare smaller. Primary smoothing afconstructed
images evensut smallregional differences ithe auto-correlation function, and results
in errorimageswhose locahuto-correlation structure gmilar tothe filter kernelused.
The effect of departures from strict stationarity on thep@sed testsemains to be
investigated.

3.3.6.5. Low df, rough random fields, noisy statistic images

F andt statisticimagesare calculatedsing an estimate dhe variance of the
observations about thassumed model. Usually this variancen® assumed to be
constant throughout thetracerebral volume, and is estimated separately for each voxel.
The low numbers of degrees of freedamailablefor variance estimation, aftétting
model parameters, lead to estimatetheivoxel variances that have large variandas
variance manifests itself as higbpatial) frequency noise in images tbk estimated
standard deviation, even though the actual (population) standard deviations would most
likely give a verysmoothimage. This noise is thegsropagated through to the statistic
images, whiclare formed with theamplestandard deviation in the denominagiving
statistic images with low smoothness.

Thesenoisy statisticimagesare notwell approximated by continuous random
fields, sincecontinuousfields with low smoothness W havefeatures (such as peaks)
smaller in spatiaéxtent than th&oxel dimensions. Worslegt al (1993a) argue that a
continuous threelimensionaly?-field with three (or less) degrees of freedom almost
certainly has azero. This is addressed rigorously in Worsld€}t994a), where it is
demonstrated that@-dimensionalx? field with degrees of freedom less than or equal to
D almost surely has zero. Sothreedimensionalt-fields onthree orlessdegrees of
freedom almost certainly have a singularity, as-d®lds with denominator degrees of
freedom <3! For small degrees of freedom (greater than threarsley (1993b)
obtained critical thresholdbat werewell in excess of those fromlaghly conservative
Bonferroni correction. Currenthinking is that x4, F, and t fields should only be
considered agoodIlattice representations of randdields if the degrees of freedom are
at least 24.For lower degrees dfeedom thehigh thresholds derived lead to
conservative tests.

Thesedifficulties are overcome if theariance image is assumednstant,when
the estimate of the common variance is regarded as exacawWealheady discussed the
dangers of assuming homoscedascity2iit 8A more common approach is to smooth the
statistic images.

3.3.6.6. Smoothing Statistic images

Theory

Consider a strictly stationary continuous Gaussian rarfadenwith zero mean,
unit variance, variance-covariance matrix of partial derivattugsand Gaussiaauto-
correlation functiorfequivalently GaussiarPrp). If this field is smoothed by convolution
with a Gaussian kernel with variance-covariance mairighen the resultindgjeld is a
strictly stationary continuous Gaussian randfed with zero mean and variance

c=1A /|2/\YZ + ID|. On normalisation to unit variance by divisioniy the resulting
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field has variance-covariance matrix of partial derivatives(2= + A, 1)L (A proof
appears in appendix C:8.)

Practice

This result formsthe basis for statistic image smoothingsometimes called
secondary smoothinig thePET functional mappindjterature. Statistitmages with non-
Gaussian (null) distributionsre first transformed to hawaivariate standar@aussian
marginal distributions. The resulting standard Gaussian statisiie isthen assumed to
be a strictly stationary Gaussian randéieldd with zero mean, unit variance, and
Gaussian auto-correlation function. The variance-covariance matrix of garieltives

is estimated afe\\Y, leading tc as an estimate of The image is smoothed withaoving
average filter with weights given by a Gaussian kernel with variance-covarianceamatrix

(appendix B:2), and the resulting image scaled by a factor®fd.bbtain the smoothed
statistic image.

Pros

The smoothed Gaussian statistitage wll have locakuto-correlation structure
dominated by thdilter kernel. Thus, secondary smoothing leadsintages which are
closer to being strictly stationarity Gaussian ran@ieflds. Inaddition, the “smoothness”
of the smoothed statistimage is mucliarger (interms offwHwMm) than thevoxel size, so
the image is more amenable toconsideration as an approximation of a smooth
continuous random field.

Smoothing tradespatial resolution for noise reductiancreasingthe signal to
noise ratio forsignalsgreater in extent than thdter kernel. However, the effects are
considerable, and different kernels can gadically differentresults. Thus smoothing is
undesirable when an activation is expected téaioy localised, orstrong enough to be
detectable without secondary smoothing.

Cons
The transforming of non-Gaussian statistiages is necessary becattsenormal
family of distributions is theonly family, of those under consideration, thatcissed
under addition. However, as we haakeady discussed, these Gaussianised statistic
images are not Gaussiamndom fields, and therefore the theory isiot directly
applicable.(See 8§3.3.3. ofifransform functions”, p.107.) Also, estimation Af, is
likely to bepoorsincethe statistigmage is rough, leading inappropriate estimation of
the scalingfactor ¢, giving smoothed statistisnages with non-unit variance which may
in turn lead to an increased risk of false-positives when analysed assuming unit variance.
Secondary smoothing is not (in general) equivalent to smoothing thédateaand
as such is difficult to interpret.
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3.4.0mnibus Tests

Consider now omnibus tests, with only weak control over familywise Type | error.

3.4.1. Friston’s exceedence proportion test

Exceedence proportion
Fristonetal. (1990) proposed using as a test statistic summarising evidence against
H,,, the proportiorP® of voxels exceeding a given threshold:

Pe=3 o iZ> FiLn}/K (41)

Thelogical expression in braces {¥) takes thevalueone if the expression ieue and
zero otherwise, following Knuth (1992). Here FH§ the cumulative distribution function
of the hypothesisedull distribution at each voxel. Thug,specifieshe threshold as an
upper tail probability thresholdRecall W={1,...K}.

The null distribution given by Fristoatal. (1990) is incorreciThey assumethat
under H,, P®K had aBinomial Bin(K, n) distribution. Whilstindividually the events
Z > F1(1-n) under H areBernoulli trials with “success” probability, they areclearly
not independent. The strongpsitive correlations between the trials resighbouring
voxels (due to the smoothness of the statistitages) results irthe exceedence
proportion having muchgreater variability than the simplebinomial model would
suggest. Thus, thbinomial test isfar too sensitive, with actuafwe far above the
specified levetr.

Example: Exceedence proportions for simulated images

For each of the T0simulated Gaussian statistic imagas, exceedence proportion
P® was computed for uppetail probability thresholds of] = 0.05, n =0.01, and
n = 0.001. Theempirical distribution functionseprs) are displayed in figd5. The
cumulative distribution function of ld(n, n(1-n)/K ) distribution is superimposed, as an
approximation to the distribution &® under thehypothesisP®K ~ Bin(K, n).48 These
plots clearly show the magnitude of therror in the binomial assumption of
Fristonetal. (1990)

The critical valuefor Friston’s exceedence proporti@ast atlevel a, for a
probability threshold, isn + ®1(1-a)xv(n(1-n)/K), for K andn suchthat thenormal
approximation is reasonableor a = 0.05;n = 0.05, 0.01, & 0.001his gives critical
exceedence proportions of 0.051332, 0.010608, & 0.001dedfctively6dp). From
the simulateddata, 95%confidence intervals fahe actuabkize ofthe testwith these
critical exceedence proportions are (0.3951,0.4113), (0.3492,0.3650), &
(0.3032,0.3184) respectively (4dp), computed via the normal approximation to Binomial.

48The usual criteridor aBin(K, n) rRv being well approximated by M(Kn, Kn(1-n)) distribution, is
that theexpected valu&n is greaterthan 3 standardieviations from zero, i.eK>9(1N)/n =

n > 9/K +9). HereK = 72410, so reasonable approximationsedferded forn > 0.00012 (5dp). Fon

too small for a reasonableormal approximation, theor of Bin(K, n) hasmost of its weighnhearzero,

so direct computation of theor (andtherefore of most percentiles) from the binomial probabilities in
this limited range involves few terms, and is not prohibitive.
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Figure 45

EDFs of the proportion of/oxels with values exceedinghe 9%, 99" &
99.9" percentiles of the Gaussian distribution, fron? dBnulated Gaussian
statistic images. Superimposed (dashed liaes)thecDrs predicted under

the binomial hypothesis of Fristatal. (1990).

SPM implementation
Although flawed, thigest isstill widely used due to itgclusion in versions of the
SPM package prior tosPMO4”. The actual implementation deserves comment.
Fristonet al (1990) proposedsingthe Poisson “rare events” approximation to
the Binomial, comparind®®K with Po(nK). The p-values given byhe spm package for
an exceedence proporti®¥ over theK intracerebral voxels thresholded probability

level n is thecompliment ofthe appropriate Poiss@pF (eqn.42).This gives agood
thenumber of voxels and thresholdsually

approximation to thebinomial for
consideredr{ < 0.05), even ibnly oneplane is being considered = 4000). There is

no computational advantage in making this approximation.
PK -1
p=1- Y e nK)/u
u=0

(42)
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In addition to this (erroneous) omnibus p-value, many authors quote a
“Chi-Squared” value, computed by tbrem package a$?

2K(P&-n)?
(PS+n)(2-P%n)

This isthe Chi-squared statistic fortest of homogeneity between thews of the
following table.Clearly this is annappropriate situation for this Chi-Squared statistic
sincethe secondow contains expected valueather than observations from a second
multinomial distribution.

Chi-Squared (43)

PEK K-P&K
nkK K-nK

3.4.2. Worsley’s exceedence proportion test

Recent work byVorsley(1994c) considers the exceedence proportionsifictly
stationary continuous Gaussian randfefd Z(x), xOWOOP, with unit variance, and
hypothesised zero mean.

Theory

The exceedence proporti®¥, for a continuous standard Gaussian randield,
above the (uppdail probability) thresholdl, is defined analogously tbe discrete case
(eqn.41) as:

Pe= [ 0y {Z00>2 1 W) (44)
for z= ®1(1-n) = -»(n)
andA(W) the Lebesgue measure¥fits volume

Let R() = Cov[Z(x), Z(x+h)] be the covariance function of the fielddependent
of x since the field is strictly stationary. Worsley (1994c, 83, eqn.3.1) shows that:

Var[PY < g@/\(W¥), where gf) = J [PrZ(0) = z Z(h) = 2) - ®(-2)?] dh
DD
Under mild conditions the above inequality tends to equality bscomes large, and the
null distribution ofP® tends to normality, with meanand the given variance.

If the correlation function is Gaussian,hRE exp(hT(2Z)1h/2) thenWorsley
(1994c, 86, eqn.6.4) shows that the limiting value of Ruif then

Var[P9 = g,(2) |Z[Y2 A(W) (45)
where
D4— 1 D+1 D _22 y2 0
9(2) = L - Hy (46)
5 Dr(D/Z) - exp( p%u exp_l( ) 2 EP

49The p-value given by thespm package is obtained as statadd not by comparing thehi-Squared
statistic with a Chi-Squared distribution with one degree of freedom.
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Since a strictly stationary continuous standard Gaussian rarfigam with
Gaussian covariance functionhiRE exp(hT(22)1h/2) is equivalent tathe field formed
by convolving a white noiskeld (of appropriate variance) with a Gaussian ket
variance-covariance matrx , the variance-covariangeatrix of partial derivatives of
thefield A is related t& by A = (22)1. (See appendix C for results.) Tiimriting value
of Var[P] is then:

VarlP9 =g @ / (WY2AW) ) (47)

Application

This result allows us tapply an omnibus exceedemm®portion test tdGaussian
statistic images. It must be assuntiedt, under k, the exceedence proportion of the
statisticimageP¢, over set ofvoxels W, is distributed approximately th® exceedence
proportion P¢, over QOOP of a strictly stationary continuous Gaussian randiefd
with the same smoothneds and Gaussian covariance functidssuming additionally
that Q is large enough to use the asymptotic result,thatk andn are suclthat a
normal approximation t®€ is reasonable, theull distribution of P€ is approximately
normal with meam and variance:

Var[P¥ = Var[P{]
= g(-®Xn)) / (INM2A(Q))
= g (-0 1(n)) / (L2 hyxhyxh,xK) (48)

where theK voxelsare ofdimensionh,xhyxh, andA is an estimate of. This gives
critical exceedence proportiarfor a test at (approximate) lewelof:

¢ =n + (L) g (L) / (A2 hyxhyxh,xK) (49)
Alternatively, an approximagevalue for an exceedence proportiiis given by

=1 cDHPe-r])\/ Y2 hyxhyxh,xKH
a o (- ()

Some values oflgqb'l(r])) for n 0{0.05, 0.01, 0.005, 0.001, 0.0001} abd= 2,3
computed 9dp using an adaptive 8 panel Newton-Cotes rule are as follows:

(50)

g (-¢"1n)) D=2 D=3

n =0.05 0.132138364 0.271976144

n=0.01 0.018522406 0.032154139

n = 0.005 0.007965094 0.012816709

n =0.001 0.001168624 0.001593527
Reservations

This method is a “randorireld” method, andnany ofthe reservations expressed
during the discussion of random field approaches of §3.3.6. are relevant here.
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Example: Simulated images

The simulatedimageswere formed by smoothing a white noiBeld with a
Gaussian movingwverage filter oFwHM 10mm. So, the variance-covarianceatrix of
the kernel i€ = 10%8In(2) x I3, so | = [(Z) Y] = (8In(2)/(x10?))3

Critical exceedencproportions for an approximatevel a = 0.05 testwvith upper
tail probability thresholds af = 0.05, 0.01, 0.001 & 0.0001; are 0.061729, 0.014033,
0.001898 & 0.000317 respective(@dp). From thesimulateddata, 95%cis for the
actual sizes dthe testsvith these critical exceedenpeoportions are (0.0356, 0.0420),
(0.0458, 0.0530), (0.0623, 0.0705), & (0.0745, 0.08&3pectively, computedsing
the normal approximation tahe binomial. Thus, for afull brain volume at this
smoothness, thiest appears to talightly conservative for a 95% thresholgi£ 0.05),
exact for a 99% threshold & 0.01),slightly laxfor a 99.9% thresholdj(= 0.001), and
very laxfor a 99.99% thresholdy & 0.0001). Afull simulationfor other smoothness
values {|A\]) is required to assess the test fully.

As notedearlier, the average estimated smoothness dfitm@éateddata in terms

of FWHM is 10.4mnx10.4mnx10.8mm. This givesf\\" smallerthan that computedith

the theoretical smoothness of 10mmwHM, and thereforeslightly larger p-values. The
critical exceedenceroportions with the estimated smoothness are 0.0627, 0.014359,
0.001970, 0.000335 (6dp) for=0.05, 0.01, 0.001 & 0.00Q&spectively95% cis for

the actuakizes ofthe tests are (0.0262, 0.0318), (0.0336, 0.0398), (0.0513, 0.0587) &
(0.0627, 0.0709Y)espectively. Thetest becomes more conservative fqr=0.05 &

n = 0.01, and less lax fogr= 0.001 &n = 0.0001.

The top 10% of theDFs of the exceedence proportion above upgieprobability
thresholds offy = 0.05, 0.01, 0.001 & 0.0001 are depictedigm6, with pointwise 95%
confidence bands computedsing the normal approximation tothe binomial.
Superimposed is the theoreticaF given by Worsley(1994c), thecompliment of the
p-value given in eqb0, computed for both the theoretical and estimated smoothness.
The discreteness of the exceedence proportion (a multiple ofoitet volume) is
evident in theeDF for n = 0.0001, which has large steps but a narrow confidence band.
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Figure 46

Top 10% of theebrs of the proportion ofoxels exceedinghe off! odh
99.9" &99.99" percentiles of the Gaussian distribution, fron $bnulated
Gaussian statistic images, with pointwise 95% confidence baritidarue
CDF, computed usingthe normal approximation to the binomial.
Superimposedre theprs predicted by Worsley (1994c), fibre theoretical
smoothness of 10mmwHM (dashed linepnd theestimated smoothness of
10.4mmx10.4mmx10.8mm (dot-dash line).
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3.4.3. Change distribution analysis

The original PET omnibustest, nowseldom used, i€hange distribution analysis
proposed by Foet al (1988).

Overview

The statistiamage is collapsed into its localaxima(or minima), the values of
voxels with valuggreater(smaller) tharthose of the 2@eighbouring voxels. Thesacal
maxima (minima)were assumed independent. The distribution of thesd maxima
(minima) was thenexaminedfor outliers,indicating departures from {d The test
statistic adopted was tlsamplekurtosis g, a statistiausuallyused to assess departures
from normality (Snedecor & Cochran, 1967, 83.14; D’Agostino, 1971), and advocated
by Grubbs (1969%4.10) to test for mtiple outliers in a normal distributionvhich is
mesokurtotic (kurtosig,=0).° Critical valuesfor the nomal distributionwere used,
using the tables of D’Agostino &ietjen (1971) for small samples, andhe normal
approximation of Zar (1984, pll19, d&efinitions, p83), the latterbeing a slight
complication ofthat of Snedecor &ochran (1967). Although thestonly hasweak
control, if significant,the biggest outlier in the distribution lotal maxima indicates
significant evidence against the respective voxel hypothesis.

S(X - X )4N
— -3
(Z(X - X)2IN )2

The kurtosis gfor a sample Xq,...,.XN}iS 0, =

For null study mean difference imagzs, Foxet al found that the distribution of
local maxima (minima) was slightly platykurtotic£€@, flatter than a normal distribution,
with heavier tails), so test of H, via atest of Hy,=0 against Hy,>0 (leptokurtosis,

more peaked than a normatjght beexpected to bsalightly conservative. Simulation
and routine use confirmed this to the case, and thestwas abandoned in favour of
more powerful approaches with strong control cweE.

Implementation

The method was actually implemented by considering thertmamaandminima
together,leading to a bimodal distribution which is distingliatykurtotic,leading to a
very conservativeest foroutliers based on detecting leptokurtosis. To overcome this,
“one-sided” g statistics were computed for the positive and negatliees separately.
Thesetwo statisticsvere assessed separatelyain by reference tibe distribution of g
for normal samples, tgive separate one sidesnnibustests ofincreases and decreases.
Splitting the distribution ofocal extremaabout zero is noequivalent to forming the
distributions of local maxima and minima separately.

50This was used in preference to a one sided outlier test basén® skewness ofhe distribution,
presumably because the distribution of the local maxima is likely to be skew under the null hypothesis.
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3.5. Suprathreshold Cluster Tests

Voxel-by-voxel approaches witlitrong control oveFwe test thestatisticimage at
each voxel with the omnibus null hypothesig, df zero mean, by comparing each voxel
value with a higtthreshold. Only the magnitude otlaparture from kj at each voxel is
assessed. The spatstructure of departures from,His not considered. Regarding
departures from |J as a signahdded to anull statistic imagesignals oflow magnitude
will (probably)not be detected, eventlifey aredistinguished by having spatiektent
(measured irrwHM) greater than theéwHMm of the statisticimage. Including spatial
considerations could therefore increase the sensitivity of tests.

Suprathreshold cluster tests

Suprathreshold cluster testa recent development WFET statistics, attempt to
includethe structure o$ignals intathe testThe statisti¢mage isthresholded at &airly
low thresholdyielding clusters of voxels with suprathreshold values. These clusters are
then assesseddividually for significance.The approach isalf way betweenrol and
voxel-by-voxel methods, testirtge evidence againghe null hypothesis for regions of
interestdefined voxel-by-voxel fronthe statistiamage. Suprathreshold clustests do
not have strong control ovemwEe at thevoxel level,but may besaid to havestrong
control at the clustdevel if, for everyidentified cluster of voxels UW, the probability
of falserejection of H is at most, thelevel ofthe testregardless of thieuth of H, at
voxelsk outside U (egn.51).

Pr(reject HyHy) < a for any UIUTIW. &0

Suprathreshold cluster size tests

Suprathreshold cluster size teséssess the suprathreshold clusters by sy
measured in voxels, or as th@ume(area) covered by theoxels (pixels) irthe cluster.
The statisticimage is thresholded at dairly low thresholdyielding clusters of
suprathreshold voxels. Clusters of size greater than or equal to a criticaiesiselared
significant.For agiventestlevel a, and uppetail probability threshold,, the problem is
to obtain thecritical cluster sizes, that is attainedvith probability atmosta under H;,.

Strong control at the clustdevel then follows, assuing subset pivotality.Single
threshold methods can be viewsdhin this framework as seekirige thresholavhich
yields a cluster of size at most 1 voxel with probability at mpatder H,.

This problem has beeaddressed by three groum@pline & Mazoye(1993),
Rolandetal. (1993), andrristonetal. (1993). The firstwo attempt to estimateritical
cluster size thresholds using simulatiajle Friston and co-workers use approximate
theory for continuous random fields.

3.5.1. Simulation approaches

Conceptually, thesimulationapproach isimple: Simulate a large number rafll
statistic images, threshold them at the specified |elesltify the suprathreshold clusters,
compute theisizes andhote thesize ofthe largest cluster for eaghage. Theempirical
distribution function of suprathreshold cluster sibhes obtained estimates theie
distribution, and can then be used for (approximate) infer&acexample the critical
cluster sizes, for a testwith level a is the lea point of the distribution ofmaximum

cluster size, with estimau%( as the 100(t)!" percentile of theempirical distribution.
An approximatep-value for a cluster okize s could besimilarly obtained as the
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proportion of theempirical distributiongreater thans. The p-value of the largest
suprathreshold cluster of a statistic image is in this scenanpevidlee for H,,.

This straightforward approach et taken by eithePoline & Mazoyer (1993), or
Rolandetal. (1993).

Poline’s approach: Poisson assumptions

Poline & Mazoyel(1993), working in B, assume that for aull statisticimage
suprathreshold clusters of size at leastcur according to a planar Poisson proe@ss
intensity 825 per unit area. Then, overptane ofareaA(Qp) the numberXZg of clusters

with size at leass is distributedX®g + Po(A(Qp)x8%9). (The Poisson approximation
enables application for the different sized areas of interest on different planesjeshe

0, for eachpossible cluster sizg5! are estimated frorsimulated nullstatisticimages

as/ézs. Forlarges, insufficient evidencagainst the Poisson assumption was found by a
Chi-squared goodness of fit test applied to simulated null statistic images.

The critical cluster sizg, for alevela test isestimated by, the snallests such

that Pri¢3s=>1)<a, with probabilities given bythe Poisson assumption with the
estimated rates(This is uniquely definedThe rates are estimated from Hane
simulateddata, and therefore must form a sequence monotonically decreassg as

increases.) Thp-value for arindividual cluster of sizes is then computed as Kig > 1)

, usingthe Poisson assumption, with the estima#tes. The step-down procedure
proposed by Polinetal. (1993),using thesg-values, distinguishes itself froall other
step-down procedures by getting harsher astélsé steps downleading to a less
powerful test than the single-stefest rejecting thenull hypothesis for clusteraith
p-value less thaa.

Roland’s approach: Poisson assumptions

Rolandetal. (1993) adopt a similar approach. Working in they assumthat the
numberX ~¢ of suprathreshold clusters of sizkas a Poisson distribution withte8 =,
independentlyfor eachsizes. With these assumptions, thember of clusters of size at

leasts, X3, is, bythe closure property of independent Poisson variates, distri@ited
s~ Po(zme ~9. The rated ~5 are estimated frorsimulations, from whiclhe critical

cluster sizesy can be estimated, or approximg@®alues forindividual clusters (and
hence KJ,) computed.

Reservations: Simulating null statistic images

The unnecessary Poisson assumpti@ast doubt on thevalidity of the
suprathreshold cluster size tests of Poline & Mazoyer (1993) and RbEN{L993).

That aside, a moréundamental reservation witthe approach concerns the
matching of simulated and realull statistic images. In particular, whether the
suprathreshold cluster size achieved vprtbbability atmosta in a null statisticimage
from a real experiment is close tioe critical valuefor thesimulated statistiemages.
This is difficult to assess, since very fewe “null” experimentsare carried outtven
considering scans acquired undee same experimental conditiorthere isstill very
little data forany particular combination of scannirmgotocol, reconstruction method
and pre-processing.

Most experimenters attempt taimic real null statisticimages by simulatingcer
imageswhosemarginal distributiorand auto-correlation function mattfose of theeal

51Since the clusters are identifigdxel-by-voxel their sizes are multiples of the pixel sizes, assuming a
constant pixel size. Thussis discrete.
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data in question. BotRoline & Mazoyer and Rolaretal. simulate paired-statistic
images from simulated (mean) difference imaggserated by smoothing a whiteise
Gaussiarfield with a Gaussian kernel, thariance ofthe noise, and thewHwm of the
kernel, chosen to match the (estimateatjance andwHm of thedifferences images in
guestiork2 Whether this is adequatemains to beeen. In particular, thgensitivity of
estimated critical values to changesha simulationparameters is seldom investigated,
thoughPoline found &0% change impixel variancehad little effect on size dhe test
for the simulated data.

Sincethe data from each studyds#ferent, and as the robustness of thiécal
values to changes the simulationparameters isiot known, these methods require a
simulation to be carriedut for every newdata setThis requires substantiabmputer
time.

Due to these problems, tlsenulationapproaches of Poline & Mazoy@r993),
and Rolancet al (1993) have been little used.

3.5.2. Friston’s Theoretical treatment

Fristonet al (1994d) have produced an approximate expression fanthef the
size ofthe largest component of the excursen of a sictly stationary continuous
standard Gaussian field, the continuous analogue of suprathreshold cluster size.

Overview of theory

Let M be thenumber of distinct componeftsof the excursionset A,(Z,W)
= {xOW:Z(x) = u}, of a strictly stationary continuous Gaussian randieid Z(x), with
zero mean and unit variance, defined over compact stbsefl P, and thresholded at a
level u= ®1(1-n). Let S be thesize (the Lebesgue measure) of a component of the
excursion set, given that it exists, and3g, be the size of the largest component of the
excursion set.

Adler (1981,Th.6.9.3, p.161) shows that thamber of points whichontribute to
make upthe Euler characteristic has a Poisson distribution ifintiteas the threshold
tends toinfinity. For high thresholdsu, the number of components tfie excursion set
A, and thenumber of localmaximaaboveu, are essentiallythe same aghe Euler
characteristic, and should therefore also havedhedimiting distribution, althouglhis
has never been rigorously prov&u, Fristonet al (1994d)assume a Poisson form for
M, with mearb, the expectedumber of locamaximaaboveu, given by Hasofef1976)
as:

8 = E[M] = A(Q)|A[M22m) (P +1)/2yD -1 exp(u2/2) (52)

The right hand side of egn.52 tise expected Euler characteristic (eqn.37), with the
polynomial iy(u) approximated by its leading term.

52The reader is referred to Poline Mazoyer (1993)and Rolandetal. (1993) for full details of the
method of simulation. Both authors use more complicated methadsndicated here, each with its
own quirks, advantageand disadvantages. Poline & Mazoyer motle® covariancéetween scans on
the same individual; Rolaretal. do not. Rolan@t al estimate the auto-correlation of tH#ference
images from “noise” images with physiological correlations “removeéldiis underestimates the
smoothness of thdifference images, resulting in simulated statistic images loitker FwHM than
appropriate, possibly leading to an underestimation of the critical suprathreshold cluster size.
53For a continuous field the excursion sger a compaaiomain is the union afompact subsets of the
domain, thecomponentsf the excursion set.



126 Chapter Three: Current Methods for Testing Statistic Images

Assuming independence thfe sizes of components ttfie excursiorset, thecbr,
Fs,.(9), Of Snax is given by:

Fsal® = I:’r(smax S)

z Pr(M =m) (Pr8<s|S> 0))™

m=0

5 - —eme (PrS<s|S> Q)M
m= 0
— o0 PIS>5]S>0) (53)

It remains to find arexpression for PE>s|S> 0). The expectation @&, given
S> 0, is easily obtained since the sum of the sizéseofomponents of the excursion set
is thesize ofthe excursioset, theexceedence proportianultiplied bythe size of the
domain ofthe field, with expectedalueA(W) ®(-u). Sincethe sizes of components are
assumed independent under the null hypothesis:

Hz s eltlls SN 515> )

=1 D Ulm=1 U
= E[M] E[S|S>0] =6 E[S|S>0] =A(W) ®(-u) (54)

Adler (1981, p.158) reports resultgven by Nosko, stating that thsize of a
component of the excursioset of a continuous strictly stationawo-dimensional
standard Gaussian random field, has asymptotically an exponential distributitanes
to infinity, with mean 2v/(u? |A|*/9). This result can be extended@odimensions since
the shape of an excursion of thedd above a threshold is (asymptotically) parabolic
with curvaturematrix -uA (Adler, 1981 p157), andsince (asymptoticallybhe height of
the excursion above the threshgthne (the “excess height”), giverthat the local
maximaexceedsy, is exponential with mean u{Adler, 1981 Th.6.8.2). Worsley (in
Fristonetal., 1994) puthesetwo facts together t@btain that thesize of a component
of the excursiorset, to the power BY, has asymptotically an exponential distribution as
the thresholdi tends to infinity, with mean:

2mn
E[FP] = [(D/2 +12P AP (55)

Fristonet al (1994d) found tat EF?P] is substantiallyover-estimated by eqn.55 for
low thresholdsu, and proposed thillowing approximaterDF for S, for use at low
thresholds:

fs()__SZ/D -1 BSZ/D (56)

giving CDF for Sas:

F9=1ePS” 0 Pre>s|S>0)=eBs” (57)
S
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The mean ofthe distribution of eqn.56 {D/2 -1) 3P/2, andp is chosen so that
this matches K as given by eqn.54:

D
_[I(({br2-1)86
=) ot 9)
Clearly &P has an exponential distribution with meag. 1Asymptotically, the
mean assumed blyriston is equal tahat given by Nosko (eqn.55), as iseen by
substituting the high value approximation to the normalcprF (P(-u)=
(2 Y2 exp(u?/2) / c), in the above expression o eqn.58).

With this assumed form for Bés | S>0) (eqn.57), eqn.53 gives tber of the
SizeSyax Of the largest component of the excursion set:

Fea(® = exp(8 exp(B s2P) ) (59)

The p-value for a component dfizes is then 1- (). Setting eqn.59 to &-and
solving fors gives the critical sizg, for a test with approximate leve eqn 60.

Sy = @B-l |n§n(%°_a)%)/z (60)

The theory is applied to standard Gaussian statistages under theusual
assumptiorthat the statistiomage is a god lattice representation of a strictly stationary
continuous standard Gaussigld with the same variance-covariance matrix of partial
derivatives, and in particul#nat thedistribution of themaximumsuprathreshold cluster
sizefor the discretdield is similar tothat of the largest component of tiecursion set
of the continuous field.

Example: Simulated images

For each of thesimulated Gaussian statistic imagia® maximumsuprathreshold
cluster size wasomputed for uppetail probability thresholds off = 0.01, 0.001 &
0.0001. With the theoretical smoothness of 3 (8In(2)/(%10%))3, D=3 and
u=-®1(n), critical suprathreshold cluster sizies the three thresholds are obtained
from eqn.60 as 3197.9n¥N990.6mmi & 318.9mn? respectively(1dp). From the
simulateddata, 95%clis for the actuasizes oftestswith these critical cluster sizes are
(0.0366, 0.0430), (0.0329, 0.0391) & (0.0470, 0.0542) (4dp), for uppegsrobability
thresholds) = 0.01, 0.001 & 0.0001 respectively.

Thetop 10% of theebrs of themaximumsuprathreshold cluster siz&,,,, for
the three thresholds considered, are depictéid.#v. Superimposed are the theoretical
cDFs of eqn.59, computed with the theoretical smoothness of 10mamm, and the
estimated smoothness of 10.4r10.4mm<10.8mm. As smoothness @ms ofFwHMm)
increases, larger suprathreshold regions becooreasingly likely, sooverestimating
smoothness results in more conservative (and therefore less powestsl) as is
apparent from théwo theoreticalcbrs. The discreteness of the suprathreshold cluster
size (a multiple othe voxel volume) is evident ithe EDF for n = 0.0001,which has
large steps but a narrow confidence band.
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Top 10% of theebrs of the maximum suprathreshold cluster sibeve a
threshold @(n), from 10" simulated Gaussian statistic images, with
pointwise 95% confidence band ftine truecbrs, computed using the
normal approximation to the binomi&uperimposedre thecbrs predicted
by Fristonetal. (1994b) (eqn.59), fothe theoretical smoothness of 10mm
FWHM  (dashed lines), and theestimated  smoothness  of
10.4mmx10.4mmx10.8mm (dot-dash line).

Reservations

We have alreadynoted many problems with randonmfield methods, when
considering single threshold methodgany of these points are relevant here. Of
additional concern ighe fact that thasymptotic results arbeing applied at low
thresholds.

3.5.3. Comments on suprathreshold cluster size methods

More powerful

Fristonetal. (1993) demonstrated thienproved power of their suprathreshold
cluster sizeests oveWorsley's Z,,,4 test for Gaussiafields. Furtherinsight into the
relative power of Friston'sS,,5x approach andther voxel-byvoxel approachesay be
gleaned fronthe (two-dimensional) simulation study of ch.4. In general, suprathreshold
cluster methodsvill outperform single threshold methodsis is not surprising,since
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the latter offer strong control at the voxel level, rather than at the rleglraswith the
suprathreshold cluster tests.

Resolving power

Since a suprathreshold cluster gestonly hasstrong control at the regidavel,
evidence of activations camly bereported aswithin this region”. For lowthresholds
whenthe critical cluster size is large this leavkg teswith low resolvingpower. This
makes the use of suprathreshold cluster methods undesirable when an activation is strong
enough to be detected by a method offering strong control at the voxel level.

Threshold choice

Activations vary in shape and intensity from extremely intense focal activations
(usually associated withprimary functions such amotor control), towidespread
activation at a lowevel (usuallyassociated with more subtle cognitive tasks such as
word recognition). Perhaps the main criticism of the suprathreshold dizstepproach
is that thechoice of threshold determines the type of activations the method is most
sensitive to.

If a low threshold is chosen (“largg), then thecritical cluster size is large. The
test will be sensitive to disperse activations whiekceed the threshold ovéarge
clusters, but wilmissfocal activations. Vice-versa, iflagh threshold is chosefsmalin
), then thecritical cluster size ismall. The test will be sensitive to intense focal
activations, but willmiss disperse lowlevel activations whichfail to exceed the
threshold. (At the extreme, ifveery highthreshold is chosen sutihat thecritical cluster
size is less thamne voxel, then we afeft with a single thresholépproach, the
criticisms of which motivated suprathreshold cluster tests in the first place.)

Suprathreshold cluster approaches including the magnitude of the activation

To overcome theproblem of intense focal activations being missed by
suprathreshold cluster sitstswith low thresholds, the magnitude of the activation can
be consideredPolineetal. (1994a) consider such an approaaking the bivariate
distribution of suprathreshold cluster size andan amplitude, which is described in
appendix H. Clearly for simulation approaches, any statistic characterising a
suprathreshold region of a statistic image can be considered.

Suprathreshold cluster excess mass tests

One statistichatsprings tomind isthe “excess mass” of a suprathreshptattion
of the statistidmage,the size ofthe region enclosed between the statistege and the
threshold plané* This is simplycomputed as thesum ofthe voxel values less the
threshold levelpver thevoxels of a suprathreshold cluster. Tl distribution of the
maximum cluster weight could be obtained easily from simulated statistic images.

However, an approximate theoretical distribution could be derive@dossian
statistic images alongthe lines of that given by Fristoretal. (1994) for the
suprathreshold cluster size3(8.2.). This is because it is possible tmmpute the
(asymptotic) distribution of theize of the region enclosed by an excursion of a
continuous strictly stationary standard Gaussian rarfdgd) andthe thresholglane.
The details are as follows:

Adler (1981, p.158)eports Nosko’s result folwo dimensions, statinghat the
(asymptotic) distribution of the squarm@ot of the volume enclosed bthe excursion of
thefield and the threshold plane,gsponential with mean’2/(u3/2 |A|IY/9). This can be
generalised td dimensions usinghe results for the shape and peak height of an

S4This statistic isconsidered for selection @fol in the Two-Stage approadescribed inthe next
chapter, where additional description is given.
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excursion of such &eld above ahigh threshold, as discussed i3.8.2. Doing so
(Worsley, private communication) revedtsat the “excess mass”V,,, to the power
2/(D+2), has an exponential distribution with mean

_ BZT[ D?-Z 1

2/(D+2
EMAO2N =N UrDe2po®

Thus, Vqhax can be considered instead 8f,,4 in the framework presented by
Fristonetal. (1994). A low threshold correction ftinis similar to Friston’s correction
for thesize of a component diie excursiorset could be considered twake this result
more accurate for the low thresholdsvdtich the testvould be applied. Thieemains to
be attempted. Thesual reservations fapplyingresults for continuoufelds to satistic
images continue to apply.
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3.6. Example—"V5” Study

3.6.1. Approaches ort-statistic images

Statistic images

To illustrate thedifferences inpower between the methodbiscussed in this
chapter, consideanalysingthe “V5” studydata. Weshall use the-statistic image
formed from subject difference images, where global changes have been removed by
proportional scaling (8.3.1.1.). Theac-pc plane ofthe resulting-statistic image,
depicted previously in&6.1., isshown again below (fig.48).
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Figure 48
Mesh plot oft-statistic imagd for “V5” study. (Eqn.21) Eackoxel statistic
is distributed as a Studentts with 11 degrees of freedormander the

hypothesis of no activation ahat voxel, H:u,= 0. Aik~N(pk,oﬁ) is
assumed. Thec-pc plane is shown.
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Bonferroni approach

Unadjusted and Bonferroni adjustgavalues for thist-statistic image were
presented in 82.6.1. Faompleteness, they are repeated here. The unadustdde
for Hy, Py, is found by referrindl to thecpr of a Student's-distribution with 11

degrees of freedom. Bonferroni adjusfedalues are computed é‘k = min{K Py, 1},
and are shown below (fig.50). The number of intracerebral voxetsrig189.
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Figure 49
(a) Mesh plot of (one-sided) Bonferroni adjusieslalues, computed from
the t-statistic image of fig.48. The-value axis is graduated in reverse.
Voxels outsidehe intracerebralolume have been removed. (b) Voxels with
adjustedp-value below level0.05. The outline of the intracerebral area is
superimposed. Thec-pc plane is shown.

Worsley’s expected Euler characteristic approach for t-fields

Consider applying Worsley's “Euler characteristic’ method to thidata
(Worsleyetal., 1992 discussed in3%3.1.),usingthe result fot-fields (Worsleyl994a,
summarised in appendix3). An estimate is required fdx, the variance-covariance
matrix of partial derivatives dhe subjectlifference imagesynder thenull hypothesis.
(Recall the discussion regarding estimation of smoothne8s3.8.) In practice it is
common to estimate the smoothn&sgthin the statistiamage. This estimate of the
variance-covariance matrix of partial derivativestto# t-field, A;, is related toA by
A = AN A\ (appendix G).

The variances dhe partiaderivatives ofthe t-field are 0.1266, 0.1068 & 0.1084
in thex, Y & z directions respectively. Hef¢=12 andh;,=1.389 (4dp)Assuming the
off diagonal elements & are zero gives estimate (to 4dp):

0911 O 0
N

A= 0 0.0769 O
H 0 0 0.07SE
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For strictly stationary standard Gausdiafds with GaussiamRF, this corresponds
to FWHM of 5.52mmx6.01mmx5.96mm(2dp). TheK voxelsare ofdimension 2mm
2mmx4mm, andtherefore constitute @wlume of 1 235 024mfn For threedimensional
t-fields with 11degrees of freedom and variance-covariance matrix of partial derivatives

7\\, definedover this volume,the expected Euler characteristic is equat t00.05 for
thresholdu, = 14.1779.This critical threshold is exceeded By at a mere 57 voxels,

none ofwhich are in theac-pc plane (fig.50b). The expected Euler charactergities
adjustedp-values forhigh values ofthe t-statistic image, wheréhe expected Euler
characteristic is greater than z€iig.50a). Inthis casethe expected Euler characteristic
falls below zero at thresholdi = 9.3518, saall voxels with valueT, below this,have
adjustedp-value of zero.

The adjustedp-values are larger thathose from a conservativBonferroni
approachijllustrating the excessive conservativeness of randmid methods fomoisy
statistic images, and foF and t-statistic images withlow degrees of freedom
(denominator degrees of freedom in the cagefads).
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Figure 50
(a) Mesh plot of (one-sided) adjustpevalues, computed fohigh voxel
values T, (fig.48), as theexpectedEuler characteristic of a matching
continuoust-field of 11 degrees of freedom, thresholdedTat Voxels
outside the intracerebratolume have been removed. (b) Voxels with
adjustedp-value below level0.05. The outline of the intracerebral area is
superimposed. Thec-pc plane is shown.
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3.6.2. Approaches on Gaussianisdestatistic image

Gaussianised t-statistic image

Gaussianisinghe t-statisticimage by replacing each voxel value with a Gaussian
variate with thesame probability of beingxceeded, givethe Gassian statisticmage
Z=(Z,,...,Z), of fig.51.
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Figure 51
Gausaamselistatlstlc image, formed froithe t-statistic image of fig,48 as
= o YF(T).

The estimated variance-covariance matrix of partial derivatives offighis
estimated withinthe image, and assuminthat the off diagonal elementsre zero,
is (to 4dp):

.0448 0 0

0 0.0401 O
H 0 0 0038&

If the PRF is assumed to be Gaussian, then this correspondswtam of
7.87mnx8.32mmx8.54mm(2dp).
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Worsley’s expected Euler characteristic approach for Gaussian fields
For threedimensional Gaussian fieldgith variance-covariance matrix of partial

derivatives 7\\2 as above, anddefined over this volume, the expected Euler
characteristic (eqn.36) is equal to=0.05 for thresholduy = 4.8279. This critical

threshold is exceeded By at 453 voxels, 44 oihich are in theac-pPc plane (fig.52b).
The expected Euler characterisgjives p-values forhigh values ofthe Gaussianised
t-statisticimage(fig.52a). Inthis casethe expected Euler characterigtiis below zero
at thresholds = 4.0746, sall voxels with valueT less than this have adjustedalue
of zero. The adjusteplvalues are smaller than those from the Bonferroni approach.
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Figure 52
(a) Mesh plot of (one-sided) adjustpevalues, computed fohigh voxel
values 7, (fig.51), as theexpectedEuler characteristic of a matching
continuous Gaussian random field, thresholde@,atVoxels outside the
intracerebravolume have been removed. (b) Voxels with adjugtediue
below level0.05. The outline of the intracerebral area is superimposed. The
AcC-PC plane is shown.
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Friston’s “Bonferroni” approach for two dimensional Gaussian fields

Consider applying Friston’s “Bonferroni” approacB.®2.), to thexc-pc plane of
the Gaussianised-statisticZ. Since this approach isually applied plane by plane at
levela (as implemented iaPMm software prior tesPMI4), we shall do likewise.

Usually the smoothness is estimafddne by plane, sincthe endolanes are
rougher than those in theiddle. The sample variances ofhe numerical partial
derivatives of thec-pc plane of the Gaussianisedtatistic are 0.0358 and 0.0351 in the
x andy directions respectively, estimated witkine image to4dp.Assuming a Gaussian
PRF, this corresponds to ewHwm of 8.80mnx8.89mm(2dp). Assumingisotropy, the
pooledsample variance dhe partiaderivatives inboth axial dimensions).0354 (4dp),

corresponds to a GaussieRF with estimated variance-covariance malkix (2921,
giving $= 14.1080 (4dp). Thewumber of intracerebral voxels the Ac-pC plane is
Kpg = 4884, with faces parallel to they plane of area(Qpg = 19 536mm.

Substituting these values into Fristoriadse positive expressiofeqn.39), and
solving forc such that théalse positive probability ia/Kpg for a = 0.05,gives a critical
threshold ofc, = 3.9943 (4dp) fothis plane. This threshold is exceededZhyat 229

voxels inthe Ac-pc plane (figb3b). Eqn.4Qgives an expressidior thep-value for the
maxima in gplane.For voxels with high valuegy, such that thip-value is positive, this
gives adjusteg-values (fig.53). Inthis casethe p-value expressiofalls belowzero at
thresholdc = 3.0835, sosoxels with values less than this have adjuptedlue ofzero.
The adjusteg-values aredramatically smallethanall those seen thus far, because the
method is applied plane by plane with oorrection for mltiple comparisonsover
planes.
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Figure 53
(a) Mesh plot of (one-sided) adjustpevalues, computed fohigh voxel
valuesz, (fig.51), using Friston’s falspositive expressioand aBonferroni
correction for the  number of intracerebrabxels in the Ac-pC
plane (egn.40)Voxels outsidehe intracerebralolume have been removed.
(b) Voxels with adjusteg-value below level 0.05.
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Friston’s suprathreshold cluster size test

Now, consider applying Friston’s suprathreshold cluster sizest to the
Gaussianisetistatistic. ThespM94 software uses this approach.

The method was described ir8.8.2. Assume that, under theomnibus null
hypothesis, th€&aussianisettstatistic is a strictly stationary discrete standaadissian
randomfield, and that the distribution of thmeaximum suprathreshold cluster size is
distributed approximatelthe same aghat of a matching continuous field. FDr= 3
dimensions, voluma(Q) = 1 235 024mif, and variance-covariance matrix of partial

derivativesf\\Z ; eqn.60givesthe critical suprathreshold cluster siZes alevel a = 0.05
test. For thresholds of ®1(1-n) with n=0.001 & 0.0001,this gives critical
suprathreshold cluster sizessgf= 657.0374mm & 228.5231mm respectively.

Forn =0.001, there are 14 suprathreshold clus@rgonsisting of one or two
voxels, except for one of 4146 voxels, correspondingvimane of 66 336mr This is
well above thecritical size, and indicatesignificant evidence againshe ombus
hypothesis forhat region. Of the 414%oxels, 573 are in thec-pc plane (fig.54b).
Eqn.59givesthe p-value for this suprathreshold cluster axk10. Let the adjusted
p-value at suprathreshold voxelsthe p-value of thesize ofthe clustecontainingthat
voxel, andzero for voxels with sub-threshold valu€or theGaussianised-statistic
image thresholded at probability threshoipg= 0.001this givesthe adjusteg-value
image of figh4a.
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Figure 54
(a) Mesh plot of (one-sided) adjustpevalues, computed for voxelisith
valuesz, greaterthan thethreshold ©1(0.001), as the-value forthe size
of the suprathreshold cluster containititat cluster (eqn.59). Fovoxels
with subthreshold valueg,, the adjustecp-value is set to zerovVoxels
outside the intracerebratolume have been removed. (b) Voxels with
adjustedp-value below level0.05. The outline of the intracerebral area is
superimposed. Thec-pc plane is shown.
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For upper tail probability thresholg= 0.0001, there are 7 suprathreshold clusters.
Four of these arsignificant, with sizes of 34320nin2464mnd, 720mn? & 272mne.
Clearlythese clusters are subsets of slgmificantcluster found for the lower threshold
of n = 0.001. The four clusters constitute 23&ixels, 324 ofwhich are in theac-pc
plane (fig.55b). The corresponding adjugtedilue image is shown in figha.
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Figure 55
(a) Mesh plot of (one-sided) adjustpevalues, computed for voxelisith
valuesZ, greaterthan thethreshold ©1(0.0001), as the-value forthe size
of the suprathreshold cluster containititat cluster (eqn.59). Fovoxels
with subthreshold valueg,, the adjustecp-value is set to zerovVoxels
outside the intracerebratolume have been removed. (b) Voxels with
adjustedp-value below level0.05. The outline of the intracerebral area is
superimposed. Thec-pc plane is shown.
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3.6.3. Secondary smoothing

Finally, consider secondary smoothing, smoothing the statistige and then
normalising the variance. For this example shalluse a Gaussidilter kernel ofFwHM
10mmx10mnmx6mm. The variance-covariance matr, of the kernel is
therefore (appendix B:4):

Bc)?oo

z=g0 ¢ 1%258'n<2>

As discussed in 33.6.6., the Gaussianisedt-statistic is smoothed with a
discretisation of this kernel (appendix B:2), atiet resultingmage normalised by

division byvc, wherec = 1A | |2AZZ + I3|. For theestimated variance-covariance matrix

of partial derivatives of the Gaussianiseatistic imagé\\z, this givesc = 0.3237.

Secondary smoothing of tiigaussianisettstatisticimage givegthe newGaussian
statistic image,SZ= (S4,...,S%), depicted infig.56. Compare this with the
Gaussianised-statistic offig.51 (note thedifferent z-axis scales). The effect of
secondary smoothing is dramatic.
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Figure 56
Ac-Pc plane of secondary smoothed Gaussiartistatistic for the “V5” study.
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Estimating smoothness for secondary smoothed statistic images

Assuming the Gaussianised-statistic is a strictly stationary discrete standard
Gaussian (zero mean, unit variance) random field, undenthius nulhypothesis, the
variance-covariance matrix of partial derivatives of the secondary smoothed Gaussianised
t-statistic image idg, = (2Z + A, 1)1 (appendix C:8). Here, this gives:

R 0171 0 0
Ay,=5 0 00164 0
d0 0 00254

This corresponds to a GausskRFof FWHM 12.73mnx13.01mnx10.44mm.

It is interesting tonote that theestimated variances dhe numerical partial
derivatives withirthe secondary smooth&aiussianisettstatisticimagecorresponds to
a GaussiarprRF of FWHM 7.11mnx7.53mnx7.00mm. This is muchHower than the
theoretical one derived from tl@aussianised-statistic, because thaill hypothesis is
not true. The signal in th&aussianisedi-statistic image is magnified by the
normalisation, resulting in a statisttnagewhose voxelevel variance is muchreater
than the hypothesised unit variangéis gives large variances and covariarfoesthe
partial derivatives (appendix C:9), leading to an underestimate of the smoothness.
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Bonferroni assessment of the secondary smoothed Gaussianised t-statistic image
To illustrate thepower of secondary smoothing, consid@aoaferronianalysis of
the secondary smoothed Gaussianisgtdtistic image.
The null hypothesis at voxdd is H: Y = 0, wherey, is themean ofthe assumed
Gaussian distribution abatvoxel, SZ ~ N(l,1). Theunadjustedg-value for voxek is

then P, = 1-d(SZ4). Bonferroni adjusteg-values are computed & = min{K Py, 1}.
The Bonferroni adjusteg-values for theAc-pc plane are showrbelow (fig.57).
Compare these with the corresponding figure fot-tatistic (fig.50). (The-values for
the t-statistic image andthe Gaussianised are identical, by construction of the
Gaussianiset)
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Figure 57

(a) Mesh plot of Bonferroni single step adjusted one-sigedhlues,

computed fromthe secondary smoothed Gaussianisefatistic image of
fig.56. Voxels outsidethe intracerebralolume have been removed.
(b) Voxels with adjustedp-value below level0.05. The outline of the
intracerebral area is superimposed. Abecc plane is shown.
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