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Chapter Three

Current Methods for Testing
Statistic Images

Having formed a statistic image, the final difficulty in the analysis of a functional
mapping experiment is assessing it. Extreme voxel statistics indicate evidence against the
null hypothesis at that voxel, but how extreme is significant? In seeking to test statistic
images at the voxel level we are presented with a large multiple comparisons problem,
which is the subject of the remainder of this thesis.

In this chapter the current methods for assessing statistic images are reviewed. The
necessary terminology and theory is introduced, and the methods expounded in sufficient
detail to enable their implementation. A set of simulated Gaussian statistic images is used
to illustrate the approaches, which gives an indication of the size of each test under
idealised conditions. The chapter closes with analyses of a PET data set using a variety of
methods. Some idea of the relative power of the tests (in 2D) can be gleaned from the
simulation study presented in the Two-Stage chapter (ch.4).
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96 Chapter Three: Current Methods for Testing Statistic Images

3.1. Preliminaries

3.1.1. Multiple comparisons

Families of hypotheses
We have a null hypothesis, Hk, for each voxel k. We wish to test these hypotheses

whilst controlling the probability of false rejection for any voxel hypothesis. In the
language of multiple comparisons (Hochberg & Tamhane, 1987) we have a family of
tests, a “collection of inferences for which it is meaningful to take into account some
combined measure of errors”. The probability of falsely rejecting any voxel hypotheses, a
Type I error, is then the familywise error rate (FWE).

Denote by HW, the combined voxel hypotheses over the intracerebral voxels
W={1,…,K}, the omnibus null hypothesis. The omnibus hypothesis is the intersection of
the voxel hypotheses, and is true if and only if the voxel hypotheses are all true.
Rejecting any voxel hypothesis implies rejection of the omnibus hypothesis. Rejecting the
omnibus hypothesis implies rejection of some (unspecified) voxel hypotheses. The FWE

for a procedure is then simply the probability of falsely rejecting HW.

Definitions: Size, level, valid, conservative, power
The size of a test is the probability of Type I error. The level of a test is the

specified maximum probability of Type I error (usually denoted by α). A valid test has
size at most the level. An exact test has size equal to the level. A conservative test has
size much less than the level. Conservative tests usually have lower power than exact
tests, where the power of the test is the probability that the test correctly rejects, given a
particular departure from the null hypothesis.

For multiple comparisons problems, there are two forms of control of familywise
error, weak and strong.

Weak control over FWE: “Omnibus” tests
Weak control over FWE simply requires that the test of the omnibus hypothesis is

valid. That is, the probability of “rejecting” a true HW is at most the given level α:

Pr(“reject HW”|HW) ≤ α (30)

In the context of an activation study, with voxel hypotheses of no activation at that
voxel (however expressed), the omnibus null hypothesis is of “no activation at any voxel
in the volume of the brain under examination”. Evidence against the null hypothesis
indicates the presence of  “some activation somewhere”, but the test has no localising
power, in that the Type I error for individual voxels is not controlled.40 (If the omnibus
null hypothesis has been rejected, then any set of voxels could be declared as “activated”.
Weak control of FWE is maintained since voxels are only declared activated if the
omnibus hypothesis is rejected.)

These tests are known as omnibus tests, since they assess whether there is any
evidence at all, anywhere, against the omnibus null hypothesis. They are useful in the
present context when interest is not in the location of some effect within the brain, but
whether there is any effect at all. If interest lies in reliably locating an effect, then a test
procedure with strong control over FWE is required.

                                               
40“Localising power, is not an accepted statistical term, but it is widely used in the PET community.
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Strong control over FWE: “Localising” tests
Strong control over FWE requires that FWE is controlled not just under HW, when

all the hypotheses are true, but under any selection of true hypotheses. That is, for any
subset U of the intracerebral voxels (with indices in) W, the corresponding subfamily of
voxel hypotheses are tested with (weak) control over FWE (eqn.31). Clearly strong
control implies weak control.

Pr(“reject HU”|HU) ≤ α for any U⊆W. (31)

Thus, for any region of the brain defined by voxels U ⊆ W, for which the
corresponding omnibus hypothesis HU is true (meaning the voxel hypotheses are all true
in this region), the test rejects HU (by rejecting one or more of the voxel hypotheses)
with probability at most α, regardless of the truth of hypotheses for voxels elsewhere in
the brain. A test procedure with strong control over FWE has localising power, and
enables the results of the tests at individual voxels to be reported.

Adjusted p-values

In most cases it is possible to compute an adjusted p-value, P
~

k, for each test of Hk,
such that the decision to reject Hk for a test with FWE = α is obtained merely by

comparing P
~

k with α. These adjusted p-values can then be displayed in an adjusted

p-value image P
~
 = (P

~
1,…,P

~
K). Formally:

P
~

k = inf{ α | Hk is rejected at FWE = α } (32)

That is, for a particular multiple comparisons procedure, the adjusted p-value for
hypothesis Hk is the smallest α such that Hk is rejected by the test at FWE = α.

Often it is expedient to think of multiple comparisons procedures in terms of
p-value adjustment. The use of adjusted p-values rather than a test does not force a
particular α on the consumer of the report, and allows the relative significance of
different regions to be easily seen. A p-value is often preferable to a statistic, since the
consumer is not left to account for the null distribution. Adjusted p-values are preferable
to unadjusted p-values since the consumer is not left to account for the multiple
comparisons problem.

Subset pivotality
The distribution of the vector P has the subset pivotality property if the joint

distribution of the subvector (Pk; k ∈ U) is identical under the restrictions HU and HW
for all subsets U ⊂ W with HU true. (Condition 2.1 in Westfall & Young, 1993.)

For statistic images from activation experiments, this implies that the p-values
computed for non-activated regions are unaffected by the presence or absence of
activation elsewhere.

3.1.2. Random fields

Definitions
A random field X(x), is a stochastic process whose “time” parameter, x, ranges

over some set more complicated than the real line. Usually this parameter space is a
subset of Euclidean D-space, ℜD. If every possible realisation X(x) of the field is a
continuous function of x for all points of the parameter space, then we shall refer to the
field as a continuous random field. If the parameter space is some finite (or countably
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infinite) subset of ℜD, then we shall refer to the field as a discrete random field. We shall
only consider real valued univariate random fields, where X(x)∈ℜ. Our parameter space
will be the image space when considering continuous fields, and the set of voxel centres
{ xk} k∈W when considering images as discrete fields. For rigorous definitions, see

Adler (1981).
The finite-dimensional distributions of a field are the joint distributions of X(x) at

any finite set of points x. A random field is weakly stationary (or weakly homogeneous)
if the marginal distributions of the field at any two points are identical. If the covariance
between the values of the field at any two points is a function only of the displacement
between the two points, then this function is the covariance function or auto-covariance
function. A random field is strictly stationary (or strictly homogeneous) if the
finite-dimensional distributions are identical for all sets of points related by a common
displacement: That is,  Pr{X(x1)≤c1,…,X(xk)≤ck} = Pr{X(x1+ x)≤c1,…,X(xk+ x)≤ck} for
any set of points x, x1,…,xk and any set of real numbers. If the finite-dimensional
distribution of the values of the field at any two points is a function only of the distance
between the two points, then the field is isotropic. Two fields are identical random fields
if the finite-dimensional distributions are identical for both fields.

Gaussian Fields
A random field X(x), is a Gaussian random field if the finite-dimensional

distributions are multivariate Normal. Clearly the field is weakly stationary if the mean
and variance are constant for all points x. The field is strictly stationary if the covariance
between the values of the field at any two points is a function of the displacement
between the points, and isotropic if the covariance is only a function of the distance
between the points.

χχ2, F and t fields
Adler (1981), defines χ2, F and t fields in an analogous way to the univariate

definitions. If X(x), X1(x),…,Xn(x), Y1(x),…,Ym(x) x∈Ψ⊂ℜD are independent,
identically distributed, (weakly) stationary, Gaussian random fields with zero mean and
unit variance then:

U(x) = ∑i=1

n
 Xi(x)2 is a χ2 field with n degrees of freedom

(defined only for n > D)

F(x) = 
∑i=1

n
 Xi(x)2/n

∑i=1

m
 Yi(x)2/m

is an F-field with n,m degrees of freedom,

(defined only for n + m > D)

and T(x) = 
X(x)

∑i=1

m
 Yi(x)2/m

is a t-field with m degrees of freedom.

That the fields have the implied marginal distributions is easily proved (Adler, 1981). If
all the component Gaussian fields are strictly stationary or isotropic, then the χ2, F and t
fields are said to be strictly stationary or isotropic respectively.

Statistic images not discrete random fields
Recall that statistic images are said to be of a certain (univariate) distribution if the

marginal distribution of the value at any voxel has that univariate distribution under the
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omnibus null hypothesis. This reflects the voxel-by-voxel approach where univariate
normality is assumed for each voxel rCBF value individually.

From the above definitions, it is clear that Gaussian, χ2, F & t statistic images are
not discrete random Gaussian, χ2, F or t fields, unless the rCBF images are assumed to
have multivariate normal distributions.

3.1.3. Simulated Gaussian statistic images
Various methods have been developed to address the multiple comparisons

problem in this image setting. Until recently, these methods were restricted to statistics
whose distribution was Gaussian under the null hypotheses, as these are more amenable
to probabilistic analysis.

We shall illustrate the methods discussed in this chapter by applying them to a set
of simulated standard Gaussian statistic images, the form of which we now describe.

Smoothing filter
Standard (zero mean, unit variance) Gaussian statistic images were simulated by

smoothing a white noise field with a Gaussian kernel with variance-covariance matrix ΣΣ.
(See appendix B:4, for a discussion of Gaussian kernels.) This implies that the Gaussian
statistic image is a strictly stationary discrete Gaussian random field, with auto-

correlation function R(h) = exp(-hT(2ΣΣ)-1h/2) / (2π)D |2ΣΣ| (appendix C:5), point
response function equal to the filter kernel (centrally inverted)

f(x) = exp(-xTΣΣ-1x/2) / (2π)D |ΣΣ|, and variance-covariance matrix of partial derivatives 
ΛΛ = (2ΣΣ)-1 (appendix C:7). The Gaussian smoothing kernel chosen was spherical, with a
FWHM of 10mm, so ΣΣ is:

ΣΣ = 






102 0 0
0 102 0
0 0 102

 
1

8ln(2)

Identification of intracerebral volume
A three-dimensional image space Ξ of dimensions 130mm×174mm×104mm was

considered, partitioned into 65×87×26 voxels of 2mm×2mm×4mm. The Talairach co-
ordinate system was adopted, graduated in millimetres. To mimic real statistic images
only voxels W corresponding to the standard Talairach intracerebral volume were
considered. These voxels were identified as follows.

Stereotactically normalised rCBF images from a number of subjects were obtained,
resampled to the current Talairach voxellation. For each subject, the intracerebral voxels
were identified as those where the rCBF was greater than a third of the maximum rCBF

for that subject. A (conservative) estimate of the intracerebral voxels of the Talairach
brain is then the intersection of the sets of intracerebral voxels for each subject, i.e., the
voxels identified as intracerebral for all the subjects. K = 72410 voxels were identified as
intracerebral voxels.

White noise images
White noise images were generated, assigning each intracerebral voxel an

independent realisation from a standard Gaussian distribution. This white noise image
was then smoothed and normalised.

Smoothing and normalisation
Since the white noise image is discrete, with voxel centres arranged in a regular

lattice, the smoothing process can be implemented as a moving average filter (see
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appendix B:2). The filter was computed with weights equal to the values of the filter
kernel at the voxel centres. The white noise image was then smoothed with this moving
average filter. To avoid edge effects, the moving average filter was truncated at the edge
of the image (see appendix B:3).

The smoothed white noise image was then normalised so that marginally, each
voxel was a standard univariate Gaussian variate. By the additivity property of
independent Gaussian variates, the marginal distribution of any particular voxel after
smoothing is Gaussian, with zero mean, and variance the sum of the squares of the
smoothing weights of the moving average filter used at that voxel.41 To obtain the
simulated standard Gaussian statistic image each voxel value was divided by the square
root of the variance. Thus the field is not strictly stationary near the boundaries of the
intracerebral volume.

Example image
Fig.42 depicts orthogonal sections of a simulated Gaussian statistic image,

generated according to the above prescription.
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Figure 42
Orthogonal sections of a simulated standard Gaussian statistic image.

                                               
41Care must be taken to include only those weights used for voxels near the boundaries of the
intracerebral volume where the filter was truncated. For voxels near the centre of the intracerebral
volume, where little truncation takes place, the sum of squares of the weights was found to be very close
to the theoretical variance of 1/(23π3/2 √|ΣΣ| derived in appendix C:5
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3.1.4. Possible directions
If we assume multivariate normality for the rCBF images, with an appropriate

model for the mean, then, as we saw in §2.5., multivariate procedures are precluded

because the estimated variance-covariance matrix ΣΣ̂ is singular.
The rCBF images can be assumed to be strictly stationary, so that the auto-

covariance function is a function only of the displacement between two voxels. From an
estimate of the auto-covariance function, an inveritible estimate of ΣΣ could be formed,
and a multivariate analysis employed. Or, the rCBF images could be considered as lattice
representations of continuous random fields with the same auto-covariance function, and
assessed using results from continuous random field theory. The former approach has not
been attempted as yet, since the latter has proved fruitful.

The simplest approaches consider the voxels individually using univariate methods,
and take account of the multiplicity with a multiple comparisons procedure. These
approaches only require an assumption of marginal univariate normality.
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3.2. MCP Tests

3.2.1. Bonferroni
If {A k} k∈W is any countable set of random events, then Bonferroni showed that:

1 - ∑
k∈W

 Pr A k  ≤ ( )Pr A
W kk∈I (33)

commonly referred to as the Bonferroni inequality, though it is only one case of a set of
inequalities. (See the Encyclopædia of Statistical Science, vol.1.)

Bonferroni correction for a family of tests
For a family of tests of null hypotheses Hk, let Ak be the event that the test

correctly accepts Hk, by finding insufficient evidence against a true Hk at FWE level α.
The right side of eqn.33 is then the probability that all tests correctly accept, given that
the omnibus hypothesis HW is true. This must be greater than 1-α for a level α omnibus

test. Pr( Ak) is the level of the test of Hk. Setting this to αk, then we see that weak

control of familywise Type I error is maintained at level α if the αk sum to less than α,
since (from eqn.33):

Pr(“reject” HW | HW) = 1- ( )Pr A
W kk∈I  ≤ ∑

k∈W

 αk (34)

Strong control of FWE is also maintained by this choice of αk, assuming subset
pivotality: Subset pivotality states that the p-value for Hk is unaffected by the truth of Hk'
for k≠k'∈W. Therefore for any set U⊆W, the probability of false rejection of HU is at
most ∑

k∈U
 αk (by eqn.34), which is in turn at most ∑

k∈W
 αk (since αk ≥ 0 ∀ k), which is

itself at most α by choice of the αk.
Usually the αk are chosen as α/K, where K is the number of tests (the cardinality of

W), giving what’s become known as the Bonferroni correction.42 The level for each test
is simply the chosen level of the omnibus test, divided by the number of tests. If the test
statistics all have the same distribution under HW, then the Bonferroni correction gives an
identical critical value for each test. The test is then a single threshold test, the statistics
for each test are thresholded at the critical value, and hypotheses with suprathreshold
statistics are rejected. HW is accepted only if no suprathreshold statistics are found.

Bonferroni single step adjusted p-values
If Pk is the p-value for Hk , then eqn.32 leads to Bonferroni single step adjusted

p-values as:

P
~

k = min{K×Pk, 1} (35)

                                               
42Prior knowledge regarding the expected location of an activation can be utilised by choosing the αk
such that they are larger in this region, resulting in a test with increased power for the region.
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Conservative
For independent events the Bonferroni inequality is quite tight, even for large

numbers of events, giving omnibus tests for families of independent tests with size
approaching the level.

For many dependent events, the inequality can be extremely slack. Since the
statistic images are smooth, tests at neighbouring voxels will be highly correlated (in
terms of their p-values), the inequality (eqn.34) will be slack, and the omnibus test will be
very conservative, with actual size much less than the specified level α.43

Example
For the simulated standard Gaussian statistic images, K = 72410. The Bonferroni

correction tests each voxel hypothesis Hk: µk = 0 against Hk: µk > 0 for Zk~ N(µk,1) at

a level α/K, giving critical threshold Φ-1(1-α/K) = 4.8277 (to 4dp) for α = 0.05. This
threshold is exceeded in only 179 of the 104 simulated statistic images, giving 95%
confidence interval (CI) for the actual size of the omnibus test as (0.0157, 0.0201)
(to 4dp, using the normal approximation to the binomial), well below the desired level of
α.

3.2.2. Other MCP methods
The Bonferroni method is the simplest of the single-step or simultaneous multiple

comparisons procedures, so called because all the hypotheses are tested simultaneously
in a single step. Other simplistic methods ignoring the correlation between the tests, such
as the Šidák method based on the Šidák-Jogdeo inequality, are also extremely
conservative in the PET scenario. Improvements on the single-step methods are multi-step
or stepwise methods which test the hypotheses in a certain order, usually the order of the
(unadjusted) p-values.

For example, the simplest stepwise method is the step-down test of Holm (1979),
which is based on the Bonferroni correction: Here the hypotheses are ordered according
to their (unadjusted) p-values, from smallest to largest: H(1),…,H(K) with corresponding
p-values P(1) ≤…≤P(K). H(1) (and hence HW) is rejected if P(1) < α/K. The test then
steps down, rejecting H(k) if and only if all H(k') for k' < k have already been rejected, and
P(k) < α/(K-k+1). Any untested hypotheses are accepted. The method controls FWE

strongly. In essence, at each step a Bonferroni correction is used for the number of
remaining hypotheses. This method is clearly more powerful for testing individual
hypotheses than the Bonferroni method, but for testing the omnibus hypothesis HW, the
methods are identical.

Thus, step-down methods are as conservative as the multiple comparisons
procedures on which they are based. For testing statistic images from PET, these
simplistic multiple comparisons methods are very conservative, and have low power.
Typically, they will only pick out large activations that are obvious to the naked eye.

                                               
43This is fairly intuitive in the current context of assessing images of statistics. At one extreme we have
independent voxel values in the statistic image, and hence independent tests. In this case the Bonferroni
inequality is quite tight. At the other extreme is the case where the voxel values are completely
dependent. Then there is essentially only one test, and the Bonferroni correction tests this at level α/K,
rather than at α as would be appropriate. The actual situation lies somewhere between these extremes.
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3.3. Random Field Approaches

To obtain more sensitive tests, it is necessary to take the correlations between the
voxel tests into account. That is, to account for the smoothness in the statistic images.
Friston et al. (1991d), and Worsley et al. (1992), independently sought to take account
of this smoothness by considering the statistic image as a lattice representation of an
underlying continuous random field, and applying results from random field theory.

Random field modelling
If we assume that the rCBF images are multivariate normal, then the image

regression is a multivariate regression, the fitted parameters are multivariate normal, and
the univariate statistic images computed are discrete random fields. Assume also that the
rCBF images are strictly stationary, so that the statistic images are also strictly stationary
under HW with covariance between values at any two points a function of the
displacement between the points. Then, if the voxels are small enough, the statistic image
may be approximated by a homogeneous continuous random field Z(x), with the same
(null) marginal distribution, covariance function and expectation, defined for x∈Ω⊂ℜ3.
Here Ω is the subset of ℜ3 covered by the voxels in W.

3.3.1. Worsley’s Euler characteristic method
Worsley et al. (1992), applied the results of Adler (1981) and co-workers on the

theory of upcrossings in random fields, to obtain a threshold which is exceeded by a
homogeneous continuous Gaussian random field with probability approximately α. This
threshold is then applied to the statistic image, whose maximum value is assumed to be
distributed similarly to the maximum of the continuous field. Voxels with suprathreshold
statistics have their null hypotheses rejected.

Overview of the theory
Briefly, the excursion set of Z(x) over a compact subset Ω of ℜD, above a

threshold u, Au(Z,Ω) = {x∈Ω:Z(x)≥u}, is characterised by the Euler (or Euler-Poincaré)
characteristic χ(Au(Z,Ω)). This essentially measures the number of isolated parts of the
excursion set, less the number of holes (see Adler, 1981, §4.4, p90 44). For a three
dimensional homogeneous Gaussian field with zero mean and unit variance, the
expectation of the Euler characteristic, originally due to Adler and Hasofer (1976), is
given by Adler (1981, Th.5.3.1, p111) as:

E[χ(Au(Z,Ω))] = λ(Ω)|ΛΛ|1/2(2π)-2(u2 -1) exp(-u2/2) (36)

Here λ(Ω) is the Lebesgue measure of Ω⊂ℜ3, the volume of the region Ω. Ω is assumed
to be a compact, convex subset of ℜ3, whose boundary has zero Lebesgue measure. |ΛΛ|
is the determinant of the (3×3) variance-covariance matrix of partial derivatives of the
random field, with respect to the co-ordinate directions (eqn.38). This parameterises the
smoothness of the field.

Adler showed that as the threshold u increases, the holes tend to disappear and the
Euler characteristic tends towards the number of local maxima. For large u, near the
global maxima Zmax, the Euler characteristic is 0 if Zmax< u and 1 if Zmax > u. For high
thresholds;  Pr(Zmax > u) ≈ Pr(χ(Au(Z,Ω)) > 1) ≈ E[χ(Au(Z,Ω))] and the expected Euler

                                               
44Adler defines the DT (differential topology) characteristic, which is shown to be the Euler (or Euler-
Poincaré) characteristic provided that the excursion set does not touch the boundary of the region Ω.
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characteristic approximates the p-value for Zmax. Setting the right side of eqn.37 to α
and solving for u gives a critical threshold uα suitable for a level α test for locating

regions of Ω where the field departs from zero expectation.
This threshold is applied to the (standard Gaussian) statistic image, giving a test

with (approximate) control of FWE in the weak sense, assuming the maxima of the
continuous field and the discrete statistic image are similarly distributed. Assuming
subset pivotality, it is easily seen that strong control over FWE is maintained, since
subsets of W correspond to regions with volume less than that of Ω.

D-dimensions
For a D-dimensional homogeneous continuous Gaussian random field with zero

mean and variance σ2, defined on Ω, a compact, convex subset of ℜD whose boundary
has zero Lebesgue measure, Adler (1976) derived the expected Euler characteristic for
excursion sets above a threshold u, given by Adler (1981, Th.5.3.1, p111) as:

E[χ(Au(Z,Ω))] = ( ) ( )
( ) ( ) ( ) ( )λ π σ

σ
Ω ΛΛ

1
2

1
2

2

22 2 1

2

− − −+

−
D

D u
D uexp P (37)

where PD(u) = ( ) ( )−
−
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Thus, the approach of Worsley et al. (1992) can be applied to Gaussian statistic images
of any dimension. ΛΛ here is the D×D variance-covariance matrix of partial derivatives of
the field with respect to the co-ordinate directions:

ΛΛ =

[ ] [ ]
[ ] [ ]
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×

(38)

where x = (x1, x2,…, xD)

Results for χχ2, F and t fields
Recent work has extended these results to χ2, F and t fields, removing the

requirement for Gaussian statistic images (Worsley, 1994a). These are presented in
appendix D.

Example
The simulated Gaussian statistic images described in §3.1.3. are (by construction)

strictly stationary discrete three-dimensional Gaussian random fields, with variance-
covariance matrix of partial derivatives ΛΛ=(2ΣΣ)-1. ΣΣ is the variance-covariance matrix of
the Gaussian smoothing kernel used. The K = 72410 intracerebral voxels represent a
volume of 1158560mm3. Substituting these values for ΛΛ and λ(Ω) respectively in eqn.36
we find that the expected Euler characteristic is α = 0.05 at critical threshold
uα = 4.6784. Of the 104 simulated statistic images, 329 have maxima exceeding this

value. A 95% CI for the FWE is (0.0300, 0.03583) to 4dp, computed using the normal
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approximation to the binomial. The test is conservative, with FWE rate below the desired
level α.

Estimates ΛΛ̂ of the variance-covariance matrix of partial derivatives ΛΛ can be
obtained by computing numerical derivatives in the simulated statistic images and then
taking their variances and covariances across the statistic image. (Estimation of
smoothing is discussed fully below, in §3.3.5.) For each of the simulated images the

smoothness was estimated. Converting each ΛΛ̂ to the estimated variance-covariance

matrix, ΣΣ̂, of the point response function (assumed Gaussian in shape) gives ΣΣ̂= (2ΛΛ̂)-1

(appendix C:7). Expressing that in terms of FWHM in the axial directions (see appendix
B:4), we find than the average estimated FWHM is 10.4mm×10.4mm×10.8mm. Increases
in smoothness lower the value of the expected Euler characteristic, since |ΛΛ| decreases.
So, if the critical threshold is calculated for each simulated image using an estimate of ΛΛ
derived from that image, the test may be expected to be slightly less conservative. The
critical threshold appropriate for a smoothness of 10.4mm×10.4mm×10.8mm is
uα = 4.6415, a value exceeded in only 366 of the simulated images. A 95% CI for the

FWE rate of a test on the simulated data with this threshold is (0.0335, 0.03969).
The empirical distribution function (EDF) of the maxima of the simulated Gaussian

statistic images is presented in fig.43. The approximate cumulative distribution function
(CDF) of the maxima by Worsley’s method is the compliment of the expected Euler
characteristic, 1-E[χ(Ac(Z,Ω))]. This is superimposed for the theoretical and average
estimated smoothness. The top 10% of the EDF is also shown, with a pointwise 95%
confidence band for the true CDF, computed using the normal approximation to the
binomial.
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Figure 43
EDF for the maxima of the simulated Gaussian statistic images, from 104

simulations. Superimposed is the compliment of (one minus) the expected
Euler characteristic, which approximates the CDF at high values, computed
with both the theoretical smoothness of 10mm FWHM (dashed line) and the
mean estimated smoothness of 10.4mm×10.4mm×10.8mm (dot-dash line).
The top 10% of the EDF plot on the left is given on the right, with a
pointwise 95% confidence band for the true CDF.
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3.3.2. Friston’s “Bonferroni” method

Brief overview of the theory
Friston et al. (1991d), worked with two dimensional slices of three dimensional

standard Gaussian statistic images. They assumed that these planar statistic images could
be approximated by the field formed by convolving a two dimensional white noise
Gaussian field, with a bivariate Gaussian kernel, with variance-covariance matrix
ΣΣ = s2 I2 (for I2 the 2×2 identity matrix). Using the one dimensional theory of level
crossings in stochastic processes, they obtained the approximate probability that the
centre of an elliptical region above a threshold c, occurs in the area corresponding to a
single pixel, as:

P = 
1

32π (s / h)2 exp(c2) (1-Φ(c))
(39)

Here h is the length of the side of the (square) pixel.45 The event that a pixel with Hk true
is the centre of an elliptical suprathreshold area is then taken to be the false positive
event, a rather heuristic arrangement. A simultaneous test for all pixel hypotheses is
obtained by using a Bonferroni correction for the number of pixels in the planar image.
The threshold cα is found by equating the above expression to α/KP. KP is the number of

intracerebral pixels in the plane under consideration. Again, the smoothness, s, is
replaced with an estimate. The test was applied plane by plane without consideration for
the multiplicity of testing many planes. Results were reported with a caveat like “a false
positive was expected once in every 20 planes for tests at significance level α = 0.05”.

3.3.3. Transform functions
To assess the significance of χ2, F and t statistic images, Friston et al. (1991)

advocated transforming the statistic image to an equivalent Gaussian statistic image. This
is achieved by replacing each voxel statistic with a standard Gaussian ordinate with
identical probability of being exceeded: If x is drawn from a distribution with Cumulative
Distribution Function F(x), then the equivalent standard Gaussian variate is z = Φ-1(F(x))
. Φ-1(F(•)) is thus a function “transforming” a random variable from one distribution to a
standard Gaussian distribution, and has become known (in PET) as a transform function.
(See appendix E for details.) We shall refer to such transformed statistic images as
Gaussianised χ2, F or t statistic images.

The transform function can be modified so that two-sided hypotheses can be
considered. This is necessary since we only have theory for one sided tests of (strictly
stationary continuous) Gaussian random fields. A Gaussianised t-statistic for a two-sided
hypothesis is the standard Gaussian ordinate z for which the probability of exceeding, is
equal to the probability with which the t-statistic x is exceeded in absolute value, by a
random variable of the specified null t-distribution. I.e. z = Φ-1(1-2(1-FT(|x|))), where FT(
•) is the cumulative distribution function of Student’s t-distribution (with the appropriate
degrees of freedom). This is equivalent to squaring the t-statistic, and “transforming” the
resulting F-statistic.

Although the resulting Gaussianised statistic image is Gaussian at every voxel, it is
not a discrete Gaussian field, since the condition of multivariate normal finite-
                                               
45Friston works in units of pixels, so in Friston et al. (1991d) eqn.39 appears with h as one. For
generality, we shall choose to work in the units of the image space (which may be chosen to be pixel
units).
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dimensional distributions is not met. (Neither is the auto-covariance function necessarily
Gaussian in shape, as is often assumed.) This is so even if the original statistic image is a
discrete random field. The consequence of this departure from assumptions is
demonstrated by Worsley (1994b) for t-fields simulated over a 1000cc volume, with
smoothness of 20mm FWHM. For a nominal 0.05 false positive rate over a 1000cc
volume, Worsley’s test on the Gaussianised t-field gave a false positive rate of 0.069 for
t-fields of 40 degrees of freedom, and 0.055 for t-fields of 120 degrees of freedom.

Considering t-statistics, the transform function tends (pointwise) to the identity
function as the degrees of freedom tend to infinity. Thus, for t-statistic images that are
discrete random t fields, the resulting Gaussian statistic image can be approximated by a
discrete Gaussian field if the degrees of freedom are high. Worsley (1994b) suggests that
the degrees of freedom should be greater than 120.

3.3.4. Comparison of Friston’s and Worsley’s methods
The unit variance field obtained by convolving a white noise Gaussian field with a

Gaussian kernel with variance-covariance matrix ΣΣ, is a strictly stationary continuous
Gaussian random field with ΛΛ = (2ΣΣ)-1 (Adler, 1981)46. Thus, Friston et al. (1991d) are
considering an isotropic strictly stationary continuous Gaussian random field, with
Gaussian covariance function, and ΛΛ = (2s) -2 I2. From eqn.39 Friston’s p-value for the
maxima in a plane, ZP

max, after Bonferroni correction is:

Pr(ZP
max >c) = 

KP × pixsize2

32π s2 exp(c2) (1-Φ(c))
 = 

π λ(ΩP) |ΛΛ|1/2 (2π)-2

4 exp(c2) (1-Φ(c))
(40)

Here ΩP is the intracerebral area in the plane, and KP the number of voxels in the plane.
Using the approximation Φ(-c)=(1-Φ(c))≈(2π)-1/2 exp(-c2/2) / c for large c,
Worsley (1992) showed that this p-value was a factor of π/4 smaller than the
corresponding expected Euler characteristic.

The result of Worsley et al. (1992) is more rigorous than that of
Friston et al. (1991d), is not restricted to two dimensions, isotropy or a Gaussian auto-
correlation function. However, for 2D work, both give approximately valid tests, as we
shall now see.

Example
To illustrate these two-dimensional methods, consider only the AC-PC plane of the

simulated Gaussian statistic images. The KP8 = 4079 intracerebral voxels in this plane
constitute a 4mm thick slice of the image space, with faces parallel to the X-Y plane of
area 16316mm2. Ignoring the third dimension, the expected Euler characteristic for a
two-dimensional strictly stationary continuous standard Gaussian random field (eqn.37)
with this area and FWHM of 10mm is equal to α = 0.05 at critical threshold uα = 3.9299

(to 4dp). This value is exceeded by the maximum statistic in the AC-PC plane of 436 of
the 104 statistic images, giving a 95% CI for the FWE of (0.0402,0.0470) to 4dp,
computed using the normal approximation to the binomial. The critical threshold for a
level α = 0.05 test by Friston’s method (eqn.40) is slightly lower, at cα = 3.8796 (to

4dp). This level is exceeded by the maximum statistic in the AC-PC plane of 526 of the
104 statistic images, giving (0.0489,0.0563) as a 95% CI for the FWE.

If the mean estimated in-plane smoothness of 10.4mm FWHM is used, then the
critical value for Worsley’s test drops to uα = 3.9085 (4dp), a value exceeded in 501 of

                                               
46See appendix C for a summary of results.
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the 104 simulations, giving (0.0465, 0.0537) as a 95% CI for the FWE. Friston’s method
gives a critical threshold of cα = 3.8580 (4dp), exceeded in 560 simulated images, giving

95% CI for the FWE as (0.0522, 0.0598).
The top 10% of the EDF of the maximum voxel value in this plane for the 104

simulations is presented in fig.44, together with a pointwise 95% confidence band for the
true CDF, computed using the normal approximation to the binomial. Superimposed are
the theoretical CDFs of Friston et al. (1991d) and Worsley et al. (1992). The agreement
between the EDF and the theoretical CDFs is remarkable. For critical thresholds c in the
range depicted, [3.5,5], the ratio of Friston’s p-value (eqn.40) to the expected Euler
characteristic (eqn.37) is close to the value of π/4 computed by Worsley et al. (1992) .
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Figure 44
Top 10% of the EDF of the maxima in the AC-PC plane of the simulated
Gaussian statistic images, from 104 simulations, with pointwise 95%
confidence band (dotted lines) for the true CDF, computed using the normal
approximation to the binomial. Superimposed is the compliment of (one
minus) the expected Euler characteristic (dot-dash line) for a 2D field of this
area (eqn.37). Also superimposed (dashed line) is the CDF as predicted by
Friston et al. (1991d) (1-eqn.40). Both theoretical CDFs were computed with
the theoretical smoothness corresponding to a Gaussian point response
function of 10mm FWHM.

3.3.5. Estimation and specification of smoothness
To apply these random field methods, an estimate of |ΛΛ|1/2 is required,

necessitating the estimation of ΛΛ, the variance-covariance matrix of the partial
derivatives of the field, or of the component fields in the case of χ2, F or t fields.

Within image estimation (Friston)
The most common approach, utilised by Friston et al. (1991d), is to estimate

smoothness within the statistic image. Numerical partial derivatives are computed for
each voxel location, and their variances and covariances taken across all voxels.

For strictly stationary χ2, F or t fields, an estimate of the variance-covariance
matrix of partial derivatives of the component fields must be derived from the (estimated)
variance-covariance matrix of partial derivatives of the statistic image.
Adler (1981, p.169) notes that for a chi-squared field, the variance of the partial
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derivatives relative to the variance of the field is twice that of its component fields.
Worsley et al. (1992) derive a relationship between the variance-covariance matrix of
partial derivatives of a t-field and its Gaussianised counterpart. A simplification of their
argument yields the relationship between the variance-covariance matrix of partial
derivatives of a t-field and its component field, and is given in appendix G. Further
relationships can be derived from Worsley (1994a).

Strong control?
Departures from the null hypothesis due to activation (or de-activation) will appear

as increases (decreases) in the statistic image, so the (numerical) partial derivatives of the
statistic image will be increased in the locality of the activation. The variances and
covariances of the partial derivatives will therefore be greater than were there no
activation present, and smoothness will be underestimated. Subset pivotality is not
maintained, even if the distribution of a non-activated part of the statistic image is
identical under the omnibus hypothesis and in the presence of activation elsewhere: The
p-values for voxels k with Hk true will be greater in the presence of an activation than
under the omnibus hypothesis HW. Thus the test still has strong control over FWE, but
becomes more conservative, and less powerful. Usually activations are very localised, or
perhaps diffuse but of low magnitude, so the effect on the estimated smoothness is
negligible.

Across image estimation from component fields (Worsley)
A more rigorous approach was advocated by Worsley et al., (1992). ΛΛ is estimated

for each voxel across the component images from which the statistic image is formed,
accounting for any change in mean due to activation (de-activation). The variances and
covariances computed for each voxel are then pooled over all voxels to obtain an
estimate of the variance-covariance matrix of partial derivatives of the component fields,
assumed strictly stationary. See Worsley et al. (1992), pp907–909 for details, where ΛΛ is
estimated for a Gaussian field of paired t-statistics computed with pooled variance
estimate.

Resels
Worsley et al. (1992) introduced the concept of resels, or resolution elements, a

measure of the number of independent measurements in a strictly stationary standard
Gaussian random field with Gaussian point response function (PRF). (The PRF for pre-
processed PET rCBF (rA) images is reasonably approximated by a Gaussian density
function, particularly if primary smoothing with a Gaussian kernel is performed!) The
size of the PRF is usually specified in terms of FWHM in the axial dimensions, FWHMX,
FWHMY & FWHMZ respectively, and the number of resels R in a volume Ω was defined as
the volume divided by the product of the FWHM:

R = λ(Ω)  /  (FWHMX × FWHMY × FWHMZ)

This is related to the variance-covariance matrix of partial derivatives of the field as
follows: If the PRF of the field is Gaussian, with variance-covariance matrix ΣΣ. Then
(appendix B:4) ΣΣ is given in terms of the FWHM as:

ΣΣ = 






FWHMX
2 0 0

0 FWHMY 2 0
0 0 FWHMZ

2
 

1
8ln(2)

The field can be generated by convolving a weakly stationary continuous white
noise Gaussian random field (of appropriate variance) with a Gaussian kernel with
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variance-covariance matrix ΣΣ.47 (This in turn implies, and is implied by, the fact that the
auto-correlation function of the strictly stationary standard Gaussian random field is a
Gaussian kernel with variance-covariance 2ΣΣ (appendix C:5). Thus the assumption of
Gaussian PRF is equivalent to one of Gaussian auto-correlation.)

The variance-covariance matrix of partial derivatives of a strictly stationary
continuous standard Gaussian random field, formed by convolving a weakly stationary
continuous white noise Gaussian random field with a Gaussian kernel with variance-
covariance matrix ΣΣ, is ΛΛ = (2ΣΣ)-1 (see appendix C:7). Therefore:

ΛΛ = 






1/FWHMX
2 0 0

0 1/FWHMY 2 0
0 0 1/FWHMZ

2
 4ln(2)

and

|ΛΛ|1/2 = (4ln(2))D/2  /  (FWHMX × FWHMY × FWHMZ)

for D = 3 dimensions, with the obvious modification for D = 2 dimensions. Thus
(4ln(2))D/2 R = λ(Ω) |ΛΛ|1/2.

Smoothness in terms of FWHM
As just discussed, if the point response function of a strictly stationary continuous

standard Gaussian random field is a Gaussian kernel, with variance-covariance matrix ΣΣ,
then ΛΛ, the variance-covariance matrix of partial derivatives of the field, is given by
ΛΛ = (2ΣΣ)-1. This result is often used in reverse to specify smoothness in terms of the
FWHM of an assumed Gaussian point response function, as follows:

Suppose a strictly stationary continuous standard Gaussian random field has

estimated variance-covariance matrix of partial derivatives ΛΛ̂. Assuming the field has a

Gaussian PRF with variance-covariance matrix ΣΣ, this is estimated by ΣΣ̂= (2ΛΛ̂)-1. (Recall
this is equivalent to assuming that the field has Gaussian auto-correlation function with
variance-covariance matrix 2ΣΣ.) It is common to consider only the variances of the
numerical partial derivatives and assume that the covariances are zero. (Equivalent to

assuming that the PRF is ellipsoidal, with axes parallel to the co-ordinate axes.) Thus ΣΣ̂
will be a diagonal D×D matrix of variances in the axial directions. The smoothness is
then specified as the product of the FWHM in the D axial directions, FWHMX × FWHMY ×
 FWHMZ. FWHM is derived from a variance σ2 by FWHM = σ 8ln(2). (See appendix B:4
for a review of Gaussian kernels and FWHM.) If the FWHM is the same in each of the axial
directions under consideration, then a single FWHM is stated.

                                               
47Convolving a delta function with the filter kernel gives the point response function. The convolution
also results in a central inversion of the filter kernel. Thus the point response function is equal to the
filter kernel, centrally inverted. In this case the filter kernel is symmetric.
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3.3.6. Discussion of random field approaches
There are many assumptions in the use of the random field method of

Worsley et al. (1992), both implicit and explicit. Difficulties with this approach stem
from the assumptions, so we shall begin by stating the assumptions, and then discuss
some of their infringements and implications.

3.3.6.1. Assumptions

The key assumption is:
• Under the null hypothesis, the maximum voxel statistic in the standard Gaussian

(χ2, F or t) statistic image, is distributed approximately the same as the maxima
of a strictly stationary continuous standard Gaussian (χ2, F or t) random field,
with (component fields with) variance-covariance matrix of partial derivatives ΛΛ
, estimated from the (component fields of the) statistic image.

This implies:
•† Under the null hypothesis, the standard Gaussian (χ2, F or t) statistic image is a

realisation of a strictly stationary, discrete, standard Gaussian (χ2, F or t)
random field.

• The voxel dimensions are small relative to the smoothness of the field
(measured as the FWHM of the PRF). This is so that the statistic image can be
considered as a good lattice representation of a continuous random field, where
the lattice is the set of voxel centres.

• The dimensions of the image are much greater than the smoothness of the field
(measured as the FWHM of the PRF). This is so that the variance-covariance
matrix of partial derivatives of the statistic image can be well estimated by
numerical derivatives.

Considering the formation of the statistic image, the assumption that the statistic image is
a strictly stationary discrete random field (†), implies:

• The rCBF (rA) images themselves are discrete Gaussian random fields, with
mean given by the assumed model (see ch.2), and variance image
v = (σ2

1,…,σ2
K).

• The error images εεijq = (εijq1,…,εijqK) (formed from the rCBF (rA) images by
subtracting the mean from the model, see ch.2) on normalisation to unit
variance by division of each voxel value by the (unknown) true standard
deviation σk, are strictly stationary discrete standard (zero mean and unit
variance) Gaussian random fields.
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3.3.6.2. Normality

Univariate normality
That rA images have normally distributed voxel values under repeat scans on the

same subject under the identical conditions would appear to be reasonable. Filtered
backprojection gives reconstructed rA images formed by multiple convolutions of the
Poisson VOR counts data, which themselves have high values. Consider the
reconstruction of rA value in a single voxel over repeat scans on the same individual
under identical conditions (identical blood tracer activity as a function of time, identical
scan protocol and rCBF). An appeal to the Central Limit Theorem would suggest
normality for the distribution of the particular voxel value, since the number of VOR

contributing to the reconstruction of a rA over a single voxel is great. Reconstruction and
primary smoothing would reinforce this assertion. Since calibration of rA to rCBF is
almost linear, (see ch.1.) rCBF at a voxel (over repeat scans under identical conditions)
may also be assumed normal.

Univariate normality: assessment using Q-Q correlation images
Various authors have illustrated the veracity of the univariate normality assumption

for each voxel, by imaging the correlation coefficient of a Q-Q plot for each voxel (as we
did for the “V5” data in §2.6.1.). As usual, there is the problem of multiplicity, and the
low power of tests due to the small numbers of replications. Departures from normality
in the extreme tails of the distribution are virtually undetectable with small sample sizes.
A general rule of thumb is that more than 50 observations are required to test for
normality.

Thus, the results of such an assessment should be interpreted with caution.

Multivariate normality
An assumption of multivariate normality for reconstructed rA images from scans on

the same individual under identical conditions is not so convincing. Although the number
of VOR contributing to the reconstruction of a rA over a single voxel is great, so is the
number of voxels. When considering the reconstruction of an entire image, the reduction
in dimensionality from the number of VOR to the number of voxels may be insufficient for
the asymptotic result of the (multivariate) central limit theorem to apply.

Again, primary smoothing would make the assumption less contentious.

Departures from Normality
It should be noted that it is in the extreme tails of the distribution that the

assumption of normality is critical. It is here that departures from normality will greatly
affect the level of the tests.

3.3.6.3. Model assumptions

Adequacy of model fit was discussed in chapter 2. Henceforth we shall assume that
the model fits, and thus that the error images εεijq have zero mean.

3.3.6.4. Strict stationarity of statistic images

That the error images (εεijq) are drawn from identical multivariate normal
distributions seems unlikely, since the pattern of inter-regional correlations of rCBF in
different individuals is likely to be different.

Biological considerations aside, it still seems unlikely that the (normalised) error
images are strictly stationary. Current work by JB Poline indicates that reconstructed rA
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images are smoother towards the centre of the tomograph image space, in that the
variances of the partial derivatives are smaller. Primary smoothing of reconstructed
images evens out small regional differences in the auto-correlation function, and results
in error images whose local auto-correlation structure is similar to the filter kernel used.
The effect of departures from strict stationarity on the proposed tests remains to be
investigated.

3.3.6.5. Low df, rough random fields, noisy statistic images

F and t statistic images are calculated using an estimate of the variance of the
observations about the assumed model. Usually this variance is not assumed to be
constant throughout the intracerebral volume, and is estimated separately for each voxel.
The low numbers of degrees of freedom available for variance estimation, after fitting
model parameters, lead to estimates of the voxel variances that have large variance. This
variance manifests itself as high (spatial) frequency noise in images of the estimated
standard deviation, even though the actual (population) standard deviations would most
likely give a very smooth image. This noise is then propagated through to the statistic
images, which are formed with the sample standard deviation in the denominator, giving
statistic images with low smoothness.

These noisy statistic images are not well approximated by continuous random
fields, since continuous fields with low smoothness will have features (such as peaks)
smaller in spatial extent than the voxel dimensions. Worsley et al. (1993a) argue that a
continuous three dimensional χ2-field with three (or less) degrees of freedom almost
certainly has a zero. This is addressed rigorously in Worsley (1994a), where it is
demonstrated that a D-dimensional χ2 field with degrees of freedom less than or equal to
D almost surely has a zero. So, three dimensional t-fields on three or less degrees of
freedom almost certainly have a singularity, as do F-fields with denominator degrees of
freedom ≤3! For small degrees of freedom (greater than three), Worsley (1993b)
obtained critical thresholds that were well in excess of those from a highly conservative
Bonferroni correction. Current thinking is that χ2, F, and t fields should only be
considered as good lattice representations of random fields if the degrees of freedom are
at least 24. For lower degrees of freedom the high thresholds derived lead to
conservative tests.

These difficulties are overcome if the variance image is assumed constant, when
the estimate of the common variance is regarded as exact. We have already discussed the
dangers of assuming homoscedascity in §2.7. A more common approach is to smooth the
statistic images.

3.3.6.6. Smoothing Statistic images

Theory
Consider a strictly stationary continuous Gaussian random field with zero mean,

unit variance, variance-covariance matrix of partial derivatives ΛΛY, and Gaussian auto-
correlation function (equivalently Gaussian PRF). If this field is smoothed by convolution
with a Gaussian kernel with variance-covariance matrix ΣΣ, then the resulting field is a
strictly stationary continuous Gaussian random field with zero mean and variance

c = 1/ 2ΛΛYΣΣ + ID . On normalisation to unit variance by division by √c, the resulting
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field has variance-covariance matrix of partial derivatives ΛΛ = (2ΣΣ + ΛΛY
-1)-1. (A proof

appears in appendix C:8.)

Practice
This result forms the basis for statistic image smoothing, sometimes called

secondary smoothing in the PET functional mapping literature. Statistic images with non-
Gaussian (null) distributions are first transformed to have univariate standard Gaussian
marginal distributions. The resulting standard Gaussian statistic image is then assumed to
be a strictly stationary Gaussian random field with zero mean, unit variance, and
Gaussian auto-correlation function. The variance-covariance matrix of partial derivatives

is estimated as ΛΛ̂Y, leading to ĉ as an estimate of c. The image is smoothed with a moving
average filter with weights given by a Gaussian kernel with variance-covariance matrix ΣΣ
(appendix B:2), and the resulting image scaled by a factor of 1/√ĉ to obtain the smoothed
statistic image.

Pros
The smoothed Gaussian statistic image will have local auto-correlation structure

dominated by the filter kernel. Thus, secondary smoothing leads to images which are
closer to being strictly stationarity Gaussian random fields. In addition, the “smoothness”
of the smoothed statistic image is much larger (in terms of FWHM) than the voxel size, so
the image is more amenable to consideration as an approximation of a smooth
continuous random field.

Smoothing trades spatial resolution for noise reduction, increasing the signal to
noise ratio for signals greater in extent than the filter kernel. However, the effects are
considerable, and different kernels can give radically different results. Thus smoothing is
undesirable when an activation is expected to be fairly localised, or strong enough to be
detectable without secondary smoothing.

Cons
The transforming of non-Gaussian statistic images is necessary because the normal

family of distributions is the only family, of those under consideration, that is closed
under addition. However, as we have already discussed, these Gaussianised statistic
images are not Gaussian random fields, and therefore the theory is not directly
applicable. (See §3.3.3. on “Transform functions”, p.107.) Also, estimation of ΛΛY is
likely to be poor since the statistic image is rough, leading to inappropriate estimation of
the scaling factor c, giving smoothed statistic images with non-unit variance which may
in turn lead to an increased risk of false-positives when analysed assuming unit variance.

Secondary smoothing is not (in general) equivalent to smoothing the scan data, and
as such is difficult to interpret.



116 Chapter Three: Current Methods for Testing Statistic Images

3.4. Omnibus Tests

Consider now omnibus tests, with only weak control over familywise Type I error.

3.4.1. Friston’s exceedence proportion test

Exceedence proportion
Friston et al. (1990) proposed using as a test statistic summarising evidence against

HW, the proportion Pe of voxels exceeding a given threshold:

Pe = ∑ k∈W
{ Zk > F-1(1-η)} / K (41)

The logical expression in braces (“{•}”) takes the value one if the expression is true and
zero otherwise, following Knuth (1992). Here F(•) is the cumulative distribution function
of the hypothesised null distribution at each voxel. Thus, η specifies the threshold as an
upper tail probability threshold. Recall W={1,…,K}.

The null distribution given by Friston et al. (1990) is incorrect. They assumed that
under HW, PeK had a Binomial Bin(K, η) distribution. Whilst individually the events
Zk > F-1(1-η) under Hk are Bernoulli trials with “success” probability η, they are clearly
not independent. The strong positive correlations between the trials at neighbouring
voxels (due to the smoothness of the statistic images) results in the exceedence
proportion having much greater variability than the simple binomial model would
suggest. Thus, the binomial test is far too sensitive, with actual FWE far above the
specified level α.

Example: Exceedence proportions for simulated images
For each of the 104 simulated Gaussian statistic images, the exceedence proportion

Pe was computed for upper tail probability thresholds of η = 0.05, η = 0.01, and
η = 0.001. The empirical distribution functions (EDFs) are displayed in fig.45. The
cumulative distribution function of a N(η, η(1-η)/K ) distribution is superimposed, as an
approximation to the distribution of Pe under the hypothesis PeK ~ Bin(K, η).48 These
plots clearly show the magnitude of the error in the binomial assumption of
Friston et al. (1990)

The critical value for Friston’s exceedence proportion test at level α, for a
probability threshold η, is η + Φ-1(1-α)×√(η(1-η)/K), for K and η such that the normal
approximation is reasonable. For α = 0.05; η = 0.05, 0.01, & 0.001 this gives critical
exceedence proportions of 0.051332, 0.010608, & 0.0011193 respectively (6dp). From
the simulated data, 95% confidence intervals for the actual size of the tests with these
critical exceedence proportions are (0.3951,0.4113), (0.3492,0.3650), &
(0.3032,0.3184) respectively (4dp), computed via the normal approximation to Binomial.

                                               
48The usual criteria for a Bin(K, η) RV being well approximated by a N(Kη, Kη(1-η)) distribution, is
that the expected value Kη is greater than 3 standard deviations from zero, i.e. K > 9(1 -η) / η ⇔ 
η > 9/(K +9). Here K = 72410, so reasonable approximations are afforded for η > 0.00012 (5dp). For η
too small for a reasonable normal approximation, the PDF of Bin(K, η) has most of its weight near zero,
so direct computation of the CDF (and therefore of most percentiles) from the binomial probabilities in
this limited range involves few terms, and is not prohibitive.
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Figure 45
EDFs of the proportion of voxels with values exceeding the 95th, 99th &
99.9th percentiles of the Gaussian distribution, from 104 simulated Gaussian
statistic images. Superimposed (dashed lines) are the CDFs predicted under
the binomial hypothesis of Friston et al. (1990).

SPM implementation
Although flawed, this test is still widely used due to its inclusion in versions of the

SPM package prior to “SPM94”. The actual implementation deserves comment.
Friston et al. (1990) proposed using the Poisson “rare events” approximation to

the Binomial, comparing PeK with Po(ηK). The p-values given by the SPM package for
an exceedence proportion Pe over the K intracerebral voxels thresholded at probability
level η is the compliment of the appropriate Poisson CDF (eqn.42). This gives a good
approximation to the binomial for the number of voxels and thresholds usually
considered (η ≤ 0.05), even if only one plane is being considered (KP ≈ 4000). There is
no computational advantage in making this approximation.

p = 1 - ∑
u = 0

PeK -1

e-ηK (ηK)u / u! (42)
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In addition to this (erroneous) omnibus p-value, many authors quote a
“Chi-Squared” value, computed by the SPM package as:49

Chi-Squared = 
2K(Pe-η)2

(Pe+η)(2-Pe-η)
(43)

This is the Chi-squared statistic for a test of homogeneity between the rows of the
following table. Clearly this is an inappropriate situation for this Chi-Squared statistic
since the second row contains expected values rather than observations from a second
multinomial distribution.

PeK K-PeK
ηK K-ηK

3.4.2. Worsley’s exceedence proportion test
Recent work by Worsley (1994c) considers the exceedence proportion of a strictly

stationary continuous Gaussian random field Z(x), x∈Ψ⊆ℜD, with unit variance, and
hypothesised zero mean.

Theory
The exceedence proportion Pc, for a continuous standard Gaussian random field,

above the (upper tail probability) threshold η, is defined analogously to the discrete case
(eqn.41) as:

Pc = ⌡⌠x∈Ψ {Z(x) > z} / λ(Ψ) (44)

for z = Φ-1(1-η) = -Φ-1(η)
and λ(Ψ) the Lebesgue measure of Ψ, its volume

Let R(h) = Cov[Z(x), Z(x+h)] be the covariance function of the field, independent
of x since the field is strictly stationary. Worsley (1994c, §3, eqn.3.1) shows that:

Var[Pc] ≤ g(z)/λ(Ψ),  where g(z) = ⌡⌠
ℜD

 [Pr(Z(0) ≥ z, Z(h) ≥ z) - Φ(-z)2] dh

Under mild conditions the above inequality tends to equality as Ψ becomes large, and the
null distribution of Pc tends to normality, with mean η and the given variance.

If the correlation function is Gaussian, R(h) = exp(-hT(2ΣΣ)-1h/2) then Worsley
(1994c, §6, eqn.6.4) shows that the limiting value of Var[Pc] is then

Var[Pc] ≈ gI(z) |2Σ|1/2 /λ(Ψ) (45)

where
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( ) ( ) ( )

πD
y

D y

z y
dy

D

D y

2

2

1 1

2
2

2

2

2

0 1 1 2

− +

−

∞

− −

−
+

−












∫

Γ exp
exp

exp
(46)

                                               
49The p-value given by the SPM package is obtained as stated, and not by comparing the Chi-Squared
statistic with a Chi-Squared distribution with one degree of freedom.
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Since a strictly stationary continuous standard Gaussian random field with
Gaussian covariance function R(h) = exp(-hT(2ΣΣ)-1h/2) is equivalent to the field formed
by convolving a white noise field (of appropriate variance) with a Gaussian kernel with
variance-covariance matrix ΣΣ , the variance-covariance matrix of partial derivatives of
the field ΛΛ is related to ΣΣ by ΛΛ = (2ΣΣ)-1. (See appendix C for results.) The limiting value
of Var[Pc] is then:

Var[Pc] ≈ gI(z) / ( |ΛΛ|1/2 λ(Ψ) ) (47)

Application
This result allows us to apply an omnibus exceedence proportion test to Gaussian

statistic images. It must be assumed that, under HW, the exceedence proportion of the
statistic image Pe, over set of voxels W, is distributed approximately as the exceedence
proportion Pc, over Ω⊂ℜD of a strictly stationary continuous Gaussian random field
with the same smoothness ΛΛ and Gaussian covariance function. Assuming additionally
that Ω is large enough to use the asymptotic result, and that K and η are such that a
normal approximation to Pe is reasonable, the null distribution of Pe is approximately
normal with mean η and variance:

Var[Pe] ≈ Var[Pc]
≈ gI(-Φ-1(η)) / ( |ΛΛ|1/2 λ(Ω) )

≈ gI(-Φ-1(η)) / ( |ΛΛ̂|1/2 hx×hy×hz×K) (48)

where the K voxels are of dimension hx×hy×hz and ΛΛ̂ is an estimate of ΛΛ. This gives
critical exceedence proportion c for a test at (approximate) level α of:

c = η + Φ-1(1-α)× gI(-Φ-1(η)) / ( |ΛΛ̂|1/2 hx×hy×hz×K) (49)

Alternatively, an approximate p-value for an exceedence proportion Pe is given by

p ≈ 1 - Φ




(Pe-η)  |ΛΛ̂|1/2 hx×hy×hz×K

gI(-Φ-1(η))
(50)

Some values of gI(-Φ-1(η)) for η ∈{0.05, 0.01, 0.005, 0.001, 0.0001} and D = 2,3
computed 9dp using an adaptive 8 panel Newton-Cotes rule are as follows:

gI(-Φ-1(η)) D = 2 D = 3

η = 0.05 0.132138364 0.271976144

η = 0.01 0.018522406 0.032154139

η = 0.005 0.007965094 0.012816709

η = 0.001 0.001168624 0.001593527

Reservations
This method is a “random field” method, and many of the reservations expressed

during the discussion of random field approaches of §3.3.6. are relevant here.
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Example: Simulated images
The simulated images were formed by smoothing a white noise field with a

Gaussian moving average filter of FWHM 10mm. So, the variance-covariance matrix of
the kernel is ΣΣ = 102/8ln(2) × I3, so |ΛΛ| = |(2ΣΣ)-1| = (8ln(2)/(2×102))3

Critical exceedence proportions for an approximate level α = 0.05 test with upper
tail probability thresholds of η = 0.05, 0.01, 0.001 & 0.0001; are 0.061729, 0.014033,
0.001898 & 0.000317 respectively (6dp). From the simulated data, 95% CIs for the
actual sizes of the tests with these critical exceedence proportions are (0.0356, 0.0420),
(0.0458, 0.0530), (0.0623, 0.0705), & (0.0745, 0.0833) respectively, computed using
the normal approximation to the binomial. Thus, for a full brain volume at this
smoothness, the test appears to be slightly conservative for a 95% threshold (η = 0.05),
exact for a 99% threshold (η = 0.01), slightly lax for a 99.9% threshold (η = 0.001), and
very lax for a 99.99% threshold (η = 0.0001). A full simulation for other smoothness
values (√|Λ|) is required to assess the test fully.

As noted earlier, the average estimated smoothness of the simulated data in terms

of FWHM is 10.4mm×10.4mm×10.8mm. This gives |ΛΛ̂| smaller than that computed with
the theoretical smoothness of 10mm FWHM, and therefore slightly larger p-values. The
critical exceedence proportions with the estimated smoothness are 0.0627, 0.014359,
0.001970, 0.000335 (6dp) for η = 0.05, 0.01, 0.001 & 0.0001 respectively. 95% CIs for
the actual sizes of the tests are (0.0262, 0.0318), (0.0336, 0.0398), (0.0513, 0.0587) &
(0.0627, 0.0709) respectively. The test becomes more conservative for η = 0.05 &
η = 0.01, and less lax for η = 0.001 & η = 0.0001.

The top 10% of the EDFs of the exceedence proportion above upper tail probability
thresholds of η = 0.05, 0.01, 0.001 & 0.0001 are depicted in fig.46, with pointwise 95%
confidence bands computed using the normal approximation to the binomial.
Superimposed is the theoretical CDF given by Worsley (1994c), the compliment of the
p-value given in eqn.50, computed for both the theoretical and estimated smoothness.
The discreteness of the exceedence proportion (a multiple of the voxel volume) is
evident in the EDF for η = 0.0001, which has large steps but a narrow confidence band.
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Figure 46
Top 10% of the EDFs of the proportion of voxels exceeding the 95th, 99th,
99.9th &99.99th percentiles of the Gaussian distribution, from 104 simulated
Gaussian statistic images, with pointwise 95% confidence band for the true
CDF, computed using the normal approximation to the binomial.
Superimposed are the CDFs predicted by Worsley (1994c), for the theoretical
smoothness of 10mm FWHM (dashed line) and the estimated smoothness of
10.4mm×10.4mm×10.8mm (dot-dash line).
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3.4.3. Change distribution analysis
The original PET omnibus test, now seldom used, is Change distribution analysis,

proposed by Fox et al. (1988).

Overview
The statistic image is collapsed into its local maxima (or minima), the values of

voxels with value greater (smaller) than those of the 26 neighbouring voxels. These local
maxima (minima) were assumed independent. The distribution of these local maxima
(minima) was then examined for outliers, indicating departures from HW. The test
statistic adopted was the sample kurtosis g2, a statistic usually used to assess departures
from normality (Snedecor & Cochran, 1967, §3.14; D’Agostino, 1971), and advocated
by Grubbs (1969, §4.10) to test for multiple outliers in a normal distribution, which is
mesokurtotic (kurtosis γ2=0).50 Critical values for the normal distribution were used,
using the tables of D’Agostino & Tietjen (1971) for small samples, and the normal
approximation of Zar (1984, p119, & definitions, p83), the latter being a slight
complication of that of Snedecor & Cochran (1967). Although the test only has weak
control, if significant, the biggest outlier in the distribution of local maxima indicates
significant evidence against the respective voxel hypothesis.

The kurtosis g2 for a sample {X1,…,XN} is g2 = 
Σ(X - X )4/N

( Σ(X - X )2/N )2
 - 3

For null study mean difference images ∆∆ •, Fox et al. found that the distribution of

local maxima (minima) was slightly platykurtotic (g2<0, flatter than a normal distribution,

with heavier tails), so a test of HW via a test of H:γ2=0 against H:γ2>0 (leptokurtosis,

more peaked than a normal) might be expected to be slightly conservative. Simulation
and routine use confirmed this to be the case, and the test was abandoned in favour of
more powerful approaches with strong control over FWE.

Implementation
The method was actually implemented by considering the local maxima and minima

together, leading to a bimodal distribution which is distinctly platykurtotic, leading to a
very conservative test for outliers based on detecting leptokurtosis. To overcome this,
“one-sided” g2 statistics were computed for the positive and negative values separately.
These two statistics were assessed separately, again by reference to the distribution of g2
for normal samples, to give separate one sided omnibus tests of increases and decreases.
Splitting the distribution of local extrema about zero is not equivalent to forming the
distributions of local maxima and minima separately.

                                               
50This was used in preference to a one sided outlier test based on the skewness of the distribution,
presumably because the distribution of the local maxima is likely to be skew under the null hypothesis.
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3.5. Suprathreshold Cluster Tests

Voxel-by-voxel approaches with strong control over FWE test the statistic image at
each voxel with the omnibus null hypothesis, HW, of zero mean, by comparing each voxel
value with a high threshold. Only the magnitude of a departure from HW at each voxel is
assessed. The spatial structure of departures from HW is not considered. Regarding
departures from HW as a signal added to a null statistic image, signals of low magnitude
will (probably) not be detected, even if they are distinguished by having spatial extent
(measured in FWHM) greater than the FWHM of the statistic image. Including spatial
considerations could therefore increase the sensitivity of tests.

Suprathreshold cluster tests
Suprathreshold cluster tests, a recent development in PET statistics, attempt to

include the structure of signals into the test. The statistic image is thresholded at a fairly
low threshold, yielding clusters of voxels with suprathreshold values. These clusters are
then assessed individually for significance. The approach is half way between ROI and
voxel-by-voxel methods, testing the evidence against the null hypothesis for regions of
interest defined voxel-by-voxel from the statistic image. Suprathreshold cluster tests do
not have strong control over FWE at the voxel level, but may be said to have strong
control at the cluster level if, for every identified cluster of voxels U⊆W, the probability
of false rejection of HU is at most α, the level of the test, regardless of the truth of Hk at
voxels k outside U (eqn.51).

Pr(“reject HU”|HU') ≤ α for any U⊆U'⊆W. (51)

Suprathreshold cluster size tests
Suprathreshold cluster size tests, assess the suprathreshold clusters by their size,

measured in voxels, or as the volume (area) covered by the voxels (pixels) in the cluster.
The statistic image is thresholded at a fairly low threshold, yielding clusters of
suprathreshold voxels. Clusters of size greater than or equal to a critical size are declared
significant. For a given test level α, and upper tail probability threshold η, the problem is
to obtain the critical cluster size sα that is attained with probability at most α under HW.

Strong control at the cluster level then follows, assuming subset pivotality. Single
threshold methods can be viewed within this framework as seeking the threshold which
yields a cluster of size at most 1 voxel with probability at most α, under HW.

This problem has been addressed by three groups; Poline & Mazoyer (1993),
Roland et al. (1993), and Friston et al. (1993). The first two attempt to estimate critical
cluster size thresholds using simulation, while Friston and co-workers use approximate
theory for continuous random fields.

3.5.1. Simulation approaches
Conceptually, the simulation approach is simple: Simulate a large number of null

statistic images, threshold them at the specified level, identify the suprathreshold clusters,
compute their sizes and note the size of the largest cluster for each image. The empirical
distribution function of suprathreshold cluster size thus obtained estimates the true
distribution, and can then be used for (approximate) inference. For example, the critical
cluster size sα for a test with level α is the 1-α point of the distribution of maximum

cluster size, with estimate sα̂ as the 100(1-α)th percentile of the empirical distribution.

An approximate p-value for a cluster of size s could be similarly obtained as the
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proportion of the empirical distribution greater than s. The p-value of the largest
suprathreshold cluster of a statistic image is in this scenario the p-value for HW.

This straightforward approach is not taken by either Poline & Mazoyer (1993), or
Roland et al. (1993).

Poline’s approach: Poisson assumptions
Poline & Mazoyer (1993), working in 2D, assume that for a null statistic image

suprathreshold clusters of size at least s occur according to a planar Poisson process with

intensity θ≥
s per unit area. Then, over a plane of area λ(ΩP) the number X≥

s of clusters

with size at least s is distributed X≥
s ~:  Po(λ(ΩP)×θ≥

s). (The Poisson approximation
enables application for the different sized areas of interest on different planes.) The rates 

θ≥
s, for each possible cluster size s,51 are estimated from simulated null statistic images

as θ̂≥
s. For large s, insufficient evidence against the Poisson assumption was found by a

Chi-squared goodness of fit test applied to simulated null statistic images.

The critical cluster size sα for a level α test is estimated by sα̂, the smallest s such

that Pr(X≥
s ≥ 1) ≤ α, with probabilities given by the Poisson assumption with the

estimated rates. (This is uniquely defined: The rates are estimated from the same
simulated data, and therefore must form a sequence monotonically decreasing as s

increases.) The p-value for an individual cluster of size s is then computed as Pr(X≥
s ≥ 1)

, using the Poisson assumption, with the estimated rates. The step-down procedure
proposed by Poline et al. (1993), using these p-values, distinguishes itself from all other
step-down procedures by getting harsher as the test steps down, leading to a less
powerful test than the single-step test rejecting the null hypothesis for clusters with
p-value less than α.

Roland’s approach: Poisson assumptions
Roland et al. (1993) adopt a similar approach. Working in 3D, they assume that the

number X =
s of suprathreshold clusters of size s has a Poisson distribution with rate θ =

s,
independently for each size s. With these assumptions, the number of clusters of size at

least s, X≥
s, is, by the closure property of independent Poisson variates, distributed X≥

s ~ Po(∑
s'≥s

θ =
s). The rates θ =

s are estimated from simulations, from which the critical

cluster size sα can be estimated, or approximate p-values for individual clusters (and

hence HW) computed.

Reservations: Simulating null statistic images
The unnecessary Poisson assumptions cast doubt on the validity of the

suprathreshold cluster size tests of Poline & Mazoyer (1993) and Roland et al. (1993).
That aside, a more fundamental reservation with the approach concerns the

matching of simulated and real null statistic images. In particular, whether the
suprathreshold cluster size achieved with probability at most α in a null statistic image
from a real experiment is close to the critical value for the simulated statistic images.
This is difficult to assess, since very few true “null” experiments are carried out. Even
considering scans acquired under the same experimental conditions, there is still very
little data for any particular combination of scanning protocol, reconstruction method
and pre-processing.

Most experimenters attempt to mimic real null statistic images by simulating rCBF

images whose marginal distribution and auto-correlation function match those of the real
                                               
51Since the clusters are identified voxel-by-voxel, their sizes are multiples of the pixel sizes, assuming a
constant pixel size. Thus s is discrete.
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data in question. Both Poline & Mazoyer and Roland et al. simulate paired t-statistic
images from simulated (mean) difference images generated by smoothing a white noise
Gaussian field with a Gaussian kernel, the variance of the noise, and the FWHM of the
kernel, chosen to match the (estimated) variance and FWHM of the differences images in
question.52 Whether this is adequate remains to be seen. In particular, the sensitivity of
estimated critical values to changes in the simulation parameters is seldom investigated,
though Poline found a 20% change in pixel variance had little effect on size of the test
for the simulated data.

Since the data from each study is different, and as the robustness of the critical
values to changes in the simulation parameters is not known, these methods require a
simulation to be carried out for every new data set. This requires substantial computer
time.

Due to these problems, the simulation approaches of Poline & Mazoyer (1993),
and Roland et al. (1993) have been little used.

3.5.2. Friston’s Theoretical treatment
Friston et al. (1994d) have produced an approximate expression for the CDF of the

size of the largest component of the excursion set of a strictly stationary continuous
standard Gaussian field, the continuous analogue of suprathreshold cluster size.

Overview of theory
Let M be the number of distinct components53 of the excursion set Au(Z,Ψ)

 = {x∈Ψ:Z(x) ≥ u}, of a strictly stationary continuous Gaussian random field Z(x), with
zero mean and unit variance, defined over compact subset Ψ of ℜD, and thresholded at a
level u = Φ-1(1-η). Let S be the size (the Lebesgue measure) of a component of the
excursion set, given that it exists, and let Smax be the size of the largest component of the
excursion set.

Adler (1981, Th.6.9.3, p.161) shows that the number of points which contribute to
make up the Euler characteristic has a Poisson distribution in the limit as the threshold
tends to infinity. For high thresholds u, the number of components of the excursion set
Au, and the number of local maxima above u, are essentially the same as the Euler
characteristic, and should therefore also have the same limiting distribution, although this
has never been rigorously proven. So, Friston et al. (1994d) assume a Poisson form for
M, with mean θ, the expected number of local maxima above u, given by Hasofer (1976)
as:

θ = E[M] = λ(Ω)|ΛΛ|1/2(2π)-(D +1)/2 uD -1 exp(-u2/2) (52)

The right hand side of eqn.52 is the expected Euler characteristic (eqn.37), with the
polynomial PD(u) approximated by its leading term.

                                               
52The reader is referred to Poline & Mazoyer (1993) and Roland et al. (1993) for full details of the
method of simulation. Both authors use more complicated methods than indicated here, each with its
own quirks, advantages and disadvantages. Poline & Mazoyer model the covariance between scans on
the same individual; Roland et al. do not. Roland et al. estimate the auto-correlation of the difference
images from “noise” images with physiological correlations “removed”. This underestimates the
smoothness of the difference images, resulting in simulated statistic images with lower FWHM than
appropriate, possibly leading to an underestimation of the critical suprathreshold cluster size.
53For a continuous field the excursion set over a compact domain is the union of compact subsets of the
domain, the components of the excursion set.
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Assuming independence of the sizes of components of the excursion set, the CDF,
FSmax

(s), of Smax  is given by:

FSmax
(s) = Pr(Smax ≤ s)

= ∑
m = 0

∞
 Pr(M = m) (Pr(S ≤ s | S > 0))m

= ∑
m = 0

∞
  

1
m! θ

m e-θ (Pr(S ≤ s | S > 0))m

= e-θ Pr(S > s | S > 0) (53)

It remains to find an expression for Pr(S > s | S > 0). The expectation of S, given
S > 0, is easily obtained since the sum of the sizes of the components of the excursion set
is the size of the excursion set, the exceedence proportion multiplied by the size of the
domain of the field, with expected value λ(Ψ) Φ(-u). Since the sizes of components are
assumed independent under the null hypothesis:
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
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



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

∑
m = 1

M

 Sm M  = E[M  E[S | S > 0] ]

= E[M] E[S | S >0] = θ E[S | S >0] = λ(Ψ) Φ(-u) (54)

Adler (1981, p.158) reports results given by Nosko, stating that the size of a
component of the excursion set of a continuous strictly stationary two-dimensional
standard Gaussian random field, has asymptotically an exponential distribution as u tends
to infinity, with mean 2π/(u2 |ΛΛ|1/2). This result can be extended to D dimensions since
the shape of an excursion of the field above a threshold u is (asymptotically) parabolic
with curvature matrix -uΛΛ (Adler, 1981, p157), and since (asymptotically) the height of
the excursion above the threshold plane (the “excess height”), given that the local
maxima exceeds u, is exponential with mean 1/u (Adler, 1981, Th.6.8.2). Worsley (in
Friston et al., 1994) put these two facts together to obtain that the size of a component
of the excursion set, to the power 2/D, has asymptotically an exponential distribution as
the threshold u tends to infinity, with mean:

E[S2/D] = 
2π

u2 Γ(D/2 +1)2/D |ΛΛ|1/D (55)

Friston et al. (1994d) found that E[S2/D] is substantially over-estimated by eqn.55 for
low thresholds u, and proposed the following approximate PDF for S, for use at low
thresholds:

fS(s) = 
2β
D  s2/D -1 e-β s

2/D
(56)

giving CDF for S as:

FS(s) = 1 -e-β s2/D
    ⇒    Pr(S >s | S >0) = e-β s2/D

(57)
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The mean of the distribution of eqn.56 is Γ(D/2 -1) β-D/2, and β is chosen so that
this matches E[S] as given by eqn.54:

β = 






Γ(D/2 -1) θ

λ(Ψ) Φ(-u)

2/D

(58)

Clearly S2/D has an exponential distribution with mean 1/β. Asymptotically, the
mean assumed by Friston is equal to that given by Nosko (eqn.55), as is seen by
substituting the high value approximation to the normal CDF (Φ(-u) ≈
(2π)-1/2 exp(-u2/2) / c), in the above expression for β (eqn.58).

With this assumed form for Pr(S >s | S >0) (eqn.57), eqn.53 gives the CDF of the
size Smax of the largest component of the excursion set:

FSmax
(s) = exp(-θ exp(-β s2/D) ) (59)

The p-value for a component of size s is then 1-FSmax
(s). Setting eqn.59 to 1-α and

solving for s gives the critical size sα for a test with approximate level α, eqn 60.

sα = 








β-1 ln






-θ

ln(1-α)

D/2
(60)

The theory is applied to standard Gaussian statistic images under the usual
assumption that the statistic image is a good lattice representation of a strictly stationary
continuous standard Gaussian field with the same variance-covariance matrix of partial
derivatives, and in particular that the distribution of the maximum suprathreshold cluster
size for the discrete field is similar to that of the largest component of the excursion set
of the continuous field.

Example: Simulated images
For each of the simulated Gaussian statistic images, the maximum suprathreshold

cluster size was computed for upper tail probability thresholds of η = 0.01, 0.001 &
0.0001. With the theoretical smoothness of |ΛΛ| = (8ln(2)/(2×102))3, D = 3 and
u = -Φ-1(η), critical suprathreshold cluster sizes for the three thresholds are obtained
from eqn.60 as 3197.9mm3, 990.6mm3 & 318.9mm3 respectively (1dp). From the
simulated data, 95% CIs for the actual sizes of tests with these critical cluster sizes are
(0.0366, 0.0430), (0.0329, 0.0391) & (0.0470, 0.0542) (4dp), for upper tail probability
thresholds η = 0.01, 0.001 & 0.0001 respectively.

The top 10% of the EDFs of the maximum suprathreshold cluster size, Smax , for
the three thresholds considered, are depicted in fig.47. Superimposed are the theoretical
CDFs of eqn.59, computed with the theoretical smoothness of 10mm FWHM, and the
estimated smoothness of 10.4mm×10.4mm×10.8mm. As smoothness (in terms of FWHM)
increases, larger suprathreshold regions become increasingly likely, so overestimating
smoothness results in more conservative (and therefore less powerful) tests, as is
apparent from the two theoretical CDFs. The discreteness of the suprathreshold cluster
size (a multiple of the voxel volume) is evident in the EDF for η = 0.0001, which has
large steps but a narrow confidence band.
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Figure 47
Top 10% of the EDFs of the maximum suprathreshold cluster size above a
threshold -Φ-1(η), from 104 simulated Gaussian statistic images, with
pointwise 95% confidence band for the true CDFs, computed using the
normal approximation to the binomial. Superimposed are the CDFs predicted
by Friston et al. (1994b) (eqn.59), for the theoretical smoothness of 10mm
FWHM (dashed lines), and the estimated smoothness of
10.4mm×10.4mm×10.8mm (dot-dash line).

Reservations
We have already noted many problems with random field methods, when

considering single threshold methods. Many of these points are relevant here. Of
additional concern is the fact that the asymptotic results are being applied at low
thresholds.

3.5.3. Comments on suprathreshold cluster size methods

More powerful
Friston et al. (1993) demonstrated the improved power of their suprathreshold

cluster size tests over Worsley’s Zmax test for Gaussian fields. Further insight into the
relative power of Friston’s Smax approach and other voxel-by-voxel approaches may be
gleaned from the (two-dimensional) simulation study of ch.4. In general, suprathreshold
cluster methods will outperform single threshold methods. This is not surprising, since
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the latter offer strong control at the voxel level, rather than at the region level as with the
suprathreshold cluster tests.

Resolving power
Since a suprathreshold cluster size test only has strong control at the region level,

evidence of activations can only be reported as “within this region”. For low thresholds
when the critical cluster size is large this leaves the test with low resolving power. This
makes the use of suprathreshold cluster methods undesirable when an activation is strong
enough to be detected by a method offering strong control at the voxel level.

Threshold choice
Activations vary in shape and intensity from extremely intense focal activations

(usually associated with primary functions such as motor control), to widespread
activation at a low level (usually associated with more subtle cognitive tasks such as
word recognition). Perhaps the main criticism of the suprathreshold cluster size approach
is that the choice of threshold determines the type of activations the method is most
sensitive to.

If a low threshold is chosen (“large” η), then the critical cluster size is large. The
test will be sensitive to disperse activations which exceed the threshold over large
clusters, but will miss focal activations. Vice-versa, if a high threshold is chosen (small η
), then the critical cluster size is small. The test will be sensitive to intense focal
activations, but will miss disperse low level activations which fail to exceed the
threshold. (At the extreme, if a very high threshold is chosen such that the critical cluster
size is less than one voxel, then we are left with a single threshold approach, the
criticisms of which motivated suprathreshold cluster tests in the first place.)

Suprathreshold cluster approaches including the magnitude of the activation
To overcome the problem of intense focal activations being missed by

suprathreshold cluster size tests with low thresholds, the magnitude of the activation can
be considered. Poline et al. (1994a) consider such an approach, using the bivariate
distribution of suprathreshold cluster size and mean amplitude, which is described in
appendix H. Clearly for simulation approaches, any statistic characterising a
suprathreshold region of a statistic image can be considered.

Suprathreshold cluster excess mass tests
One statistic that springs to mind is the “excess mass” of a suprathreshold portion

of the statistic image, the size of the region enclosed between the statistic image and the
threshold plane.54 This is simply computed as the sum of the voxel values less the
threshold level, over the voxels of a suprathreshold cluster. The null distribution of the
maximum cluster weight could be obtained easily from simulated statistic images.

However, an approximate theoretical distribution could be derived for Gaussian
statistic images along the lines of that given by Friston et al. (1994) for the
suprathreshold cluster size (§3.5.2.). This is because it is possible to compute the
(asymptotic) distribution of the size of the region enclosed by an excursion of a
continuous strictly stationary standard Gaussian random field, and the threshold plane.
The details are as follows:

Adler (1981, p.158) reports Nosko’s result for two dimensions, stating that the
(asymptotic) distribution of the square root of the volume enclosed by the excursion of
the field and the threshold plane, is exponential with mean π1/2/(u3/2 |ΛΛ|1/2). This can be
generalised to D dimensions using the results for the shape and peak height of an

                                               
54This statistic is considered for selection of ROI in the Two-Stage approach described in the next
chapter, where additional description is given.
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excursion of such a field above a high threshold, as discussed in §3.5.2. Doing so
(Worsley, private communication) reveals that the “excess mass”, Vu, to the power
2/(D+2), has an exponential distribution with mean

E[Vu
2/(D+2)] = 







2π

u |ΛΛ|
 

D
D+2

 
1

u Γ(D/2+2)2/(D+2)

Thus, Vmax can be considered instead of Smax in the framework presented by
Friston et al. (1994). A low threshold correction for this similar to Friston’s correction
for the size of a component of the excursion set could be considered to make this result
more accurate for the low thresholds at which the test would be applied. This remains to
be attempted. The usual reservations for applying results for continuous fields to statistic
images continue to apply.
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3.6. Example–“V5” Study

3.6.1. Approaches on t-statistic images

Statistic images
To illustrate the differences in power between the methods discussed in this

chapter, consider analysing the “V5” study data. We shall use the t-statistic image
formed from subject difference images, where global changes have been removed by
proportional scaling (§2.3.1.1.). The AC-PC plane of the resulting t-statistic image,
depicted previously in §2.6.1., is shown again below (fig.48).
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Figure 48
Mesh plot of t-statistic image T for “V5” study. (Eqn.21) Each voxel statistic
is distributed as a Student’s t with 11 degrees of freedom under the
hypothesis of no activation at that voxel, Hk:µk= 0. ∆ik ~ N(µk,σ

2
k) is

assumed. The AC-PC plane is shown.



132 Chapter Three: Current Methods for Testing Statistic Images

Bonferroni approach
Unadjusted and Bonferroni adjusted p-values for this t-statistic image were

presented in §2.6.1. For completeness, they are repeated here. The unadjusted p-value
for Hk , Pk, is found by referring Tk to the CDF of a Student’s t-distribution with 11

degrees of freedom. Bonferroni adjusted p-values are computed as P
~

k = min{K Pk, 1},
and are shown below (fig.50). The number of intracerebral voxels is K=77189.
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Figure 49
(a) Mesh plot of (one-sided) Bonferroni adjusted p-values, computed from
the t-statistic image of fig.48. The p-value axis is graduated in reverse.
Voxels outside the intracerebral volume have been removed. (b) Voxels with
adjusted p-value below level 0.05. The outline of the intracerebral area is
superimposed. The AC-PC plane is shown.

Worsley’s expected Euler characteristic approach for t-fields
Consider applying Worsley’s “Euler characteristic” method to this data

(Worsley et al., 1992, discussed in §3.3.1.), using the result for t-fields (Worsley 1994a,
summarised in appendix D:3). An estimate is required for ΛΛ, the variance-covariance
matrix of partial derivatives of the subject difference images, under the null hypothesis.
(Recall the discussion regarding estimation of smoothness, §3.3.5.) In practice it is
common to estimate the smoothness within the statistic image. This estimate of the
variance-covariance matrix of partial derivatives of the t-field, ΛΛT, is related to ΛΛ by
ΛΛT = λN ΛΛ (appendix G).

The variances of the partial derivatives of the t-field are 0.1266, 0.1068 & 0.1084
in the X, Y & Z directions respectively. Here N =12 and λ12=1.389 (4dp). Assuming the
off diagonal elements of ΛΛ are zero gives estimate (to 4dp):

ΛΛ̂ = 






0.0911 0 0
0 0.0769 0
0 0 0.0781
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For strictly stationary standard Gaussian fields with Gaussian PRF, this corresponds
to FWHM of 5.52mm×6.01mm×5.96mm (2dp). The K voxels are of dimension 2mm×
2mm×4mm, and therefore constitute a volume of 1 235 024mm3. For three dimensional
t-fields with 11 degrees of freedom and variance-covariance matrix of partial derivatives

ΛΛ̂, defined over this volume, the expected Euler characteristic is equal to α = 0.05 for
threshold uα = 14.1779. This critical threshold is exceeded by Tk at a mere 57 voxels,

none of which are in the AC-PC plane (fig.50b). The expected Euler characteristic gives
adjusted p-values for high values of the t-statistic image, where the expected Euler
characteristic is greater than zero (fig.50a). In this case, the expected Euler characteristic
falls below zero at threshold u = 9.3518, so all voxels with value Tk below this, have
adjusted p-value of zero.

The adjusted p-values are larger than those from a conservative Bonferroni
approach, illustrating the excessive conservativeness of random field methods for noisy
statistic images, and for F and t-statistic images with low degrees of freedom
(denominator degrees of freedom in the case of F-fields).
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Figure 50
(a) Mesh plot of (one-sided) adjusted p-values, computed for high voxel
values Tk (fig.48), as the expected Euler characteristic of a matching
continuous t-field of 11 degrees of freedom, thresholded at Tk. Voxels
outside the intracerebral volume have been removed. (b) Voxels with
adjusted p-value below level 0.05. The outline of the intracerebral area is
superimposed. The AC-PC plane is shown.
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3.6.2. Approaches on Gaussianised t-statistic image

Gaussianised t-statistic image
Gaussianising the t-statistic image by replacing each voxel value with a Gaussian

variate with the same probability of being exceeded, gives the Gaussian statistic image
Z = (Z1,…,ZK), of fig.51.
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Figure 51
Gaussianised t-statistic image, formed from the t-statistic image of fig,48 as
Zk= Φ-1(FT(Tk)).

The estimated variance-covariance matrix of partial derivatives of this field,
estimated within the image, and assuming that the off diagonal elements are zero,
is (to 4dp):

ΛΛ̂Z = 






0.0448 0 0
0 0.0401 0
0 0 0.0380

If the PRF is assumed to be Gaussian, then this corresponds to FWHM of
7.87mm×8.32mm×8.54mm (2dp).
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Worsley’s expected Euler characteristic approach for Gaussian fields
For three dimensional Gaussian fields with variance-covariance matrix of partial

derivatives  ΛΛ̂Z as above, and defined over this volume, the expected Euler
characteristic (eqn.36) is equal to α = 0.05 for threshold uα = 4.8279. This critical

threshold is exceeded by Zk at 453 voxels, 44 of which are in the AC-PC plane (fig.52b).
The expected Euler characteristic gives p-values for high values of the Gaussianised
t-statistic image (fig.52a). In this case, the expected Euler characteristic falls below zero
at threshold u = 4.0746, so all voxels with value Tk less than this have adjusted p-value
of zero. The adjusted p-values are smaller than those from the Bonferroni approach.
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Figure 52
(a) Mesh plot of (one-sided) adjusted p-values, computed for high voxel
values Zk (fig.51), as the expected Euler characteristic of a matching
continuous Gaussian random field, thresholded at Zk. Voxels outside the
intracerebral volume have been removed. (b) Voxels with adjusted p-value
below level 0.05. The outline of the intracerebral area is superimposed. The
AC-PC plane is shown.
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Friston’s “Bonferroni” approach for two dimensional Gaussian fields
Consider applying Friston’s “Bonferroni” approach (§3.3.2.), to the AC-PC plane of

the Gaussianised t-statistic Z. Since this approach is usually applied plane by plane at
level α (as implemented in SPM software prior to SPM94), we shall do likewise.

Usually the smoothness is estimated plane by plane, since the end planes are
rougher than those in the middle. The sample variances of the numerical partial
derivatives of the AC-PC plane of the Gaussianised t-statistic are 0.0358 and 0.0351 in the
X and Y directions respectively, estimated within the image to 4dp. Assuming a Gaussian
PRF, this corresponds to a FWHM of 8.80mm×8.89mm (2dp). Assuming isotropy, the
pooled sample variance of the partial derivatives in both axial dimensions, 0.0354 (4dp),

corresponds to a Gaussian PRF with estimated variance-covariance matrix ΛΛ̂ = (2ŝ)-2 I2
giving ŝ = 14.1080 (4dp). The number of intracerebral voxels in the AC-PC plane is
KP8 = 4884, with faces parallel to the X-Y plane of area λ(ΩP8) = 19 536mm2.

Substituting these values into Friston’s false positive expression (eqn.39), and
solving for c such that the false positive probability is α/KP8, for α = 0.05, gives a critical
threshold of cα = 3.9943 (4dp) for this plane. This threshold is exceeded by Zk at 229

voxels in the AC-PC plane (fig.53b). Eqn.40 gives an expression for the p-value for the
maxima in a plane. For voxels with high values Zk, such that this p-value is positive, this
gives adjusted p-values (fig.53a). In this case, the p-value expression falls below zero at
threshold c = 3.0835, so voxels with values less than this have adjusted p-value of zero.
The adjusted p-values are dramatically smaller than all those seen thus far, because the
method is applied plane by plane with no correction for multiple comparisons over
planes.
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Figure 53
(a) Mesh plot of (one-sided) adjusted p-values, computed for high voxel
values Zk (fig.51), using Friston’s false positive expression and a Bonferroni
correction for the number of intracerebral voxels in the AC-PC

plane (eqn.40). Voxels outside the intracerebral volume have been removed.
(b) Voxels with adjusted p-value below level 0.05.
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Friston’s suprathreshold cluster size test
Now, consider applying Friston’s suprathreshold cluster size test to the

Gaussianised t-statistic. The SPM94 software uses this approach.
The method was described in §3.5.2. Assume that, under the omnibus null

hypothesis, the Gaussianised t-statistic is a strictly stationary discrete standard Gaussian
random field, and that the distribution of the maximum suprathreshold cluster size is
distributed approximately the same as that of a matching continuous field. For D = 3
dimensions, volume λ(Ω) = 1 235 024mm3, and variance-covariance matrix of partial

derivatives ΛΛ̂Z ; eqn.60 gives the critical suprathreshold cluster sizes for a level α = 0.05
test. For thresholds of Φ-1(1-η) with η = 0.001 & 0.0001, this gives critical
suprathreshold cluster sizes of sα = 657.0374mm3 & 228.5231mm3 respectively.

For η = 0.001, there are 14 suprathreshold clusters, all consisting of one or two
voxels, except for one of 4146 voxels, corresponding to a volume of 66 336mm3. This is
well above the critical size, and indicates significant evidence against the omnibus
hypothesis for that region. Of the 4146 voxels, 573 are in the AC-PC plane (fig.54b).
Eqn.59 gives the p-value for this suprathreshold cluster as <1×10-10. Let the adjusted
p-value at suprathreshold voxels be the p-value of the size of the cluster containing that
voxel, and zero for voxels with sub-threshold value. For the Gaussianised t-statistic
image thresholded at probability threshold η = 0.001 this gives the adjusted p-value
image of fig.54a.
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Figure 54
(a) Mesh plot of (one-sided) adjusted p-values, computed for voxels with
values Zk greater than the threshold -Φ-1(0.001), as the p-value for the size
of the suprathreshold cluster containing that cluster (eqn.59). For voxels
with subthreshold values Zk, the adjusted p-value is set to zero. Voxels
outside the intracerebral volume have been removed. (b) Voxels with
adjusted p-value below level 0.05. The outline of the intracerebral area is
superimposed. The AC-PC plane is shown.
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For upper tail probability threshold η = 0.0001, there are 7 suprathreshold clusters.
Four of these are significant, with sizes of 34320mm3, 2464mm3, 720mm3 & 272mm3.
Clearly these clusters are subsets of the significant cluster found for the lower threshold
of η = 0.001. The four clusters constitute 2361 voxels, 324 of which are in the AC-PC

plane (fig.55b). The corresponding adjusted p-value image is shown in fig.55a.
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Figure 55
(a) Mesh plot of (one-sided) adjusted p-values, computed for voxels with
values Zk greater than the threshold -Φ-1(0.0001), as the p-value for the size
of the suprathreshold cluster containing that cluster (eqn.59). For voxels
with subthreshold values Zk, the adjusted p-value is set to zero. Voxels
outside the intracerebral volume have been removed. (b) Voxels with
adjusted p-value below level 0.05. The outline of the intracerebral area is
superimposed. The AC-PC plane is shown.
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3.6.3. Secondary smoothing
Finally, consider secondary smoothing, smoothing the statistic image and then

normalising the variance. For this example, we shall use a Gaussian filter kernel of FWHM

10mm×10mm×6mm. The variance-covariance matrix, ΣΣ, of the kernel is
therefore (appendix B:4):

ΣΣ = 






102 0 0
0 102 0
0 0 122

 
1

8ln(2)

As discussed in §3.3.6.6., the Gaussianised t-statistic is smoothed with a
discretisation of this kernel (appendix B:2), and the resulting image normalised by

division by √c, where c = 1/ 2ΛΛZΣΣ + I3 . For the estimated variance-covariance matrix

of partial derivatives of the Gaussianised t-statistic image ΛΛ̂Z, this gives c = 0.3237.
Secondary smoothing of the Gaussianised t-statistic image gives the new Gaussian

statistic image, SZ = (SZ1,…,SZK), depicted in fig.56. Compare this with the
Gaussianised t-statistic of fig.51 (note the different Z-axis scales). The effect of
secondary smoothing is dramatic.
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Figure 56
AC-PC plane of secondary smoothed Gaussianised t-statistic for the “V5” study.
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Estimating smoothness for secondary smoothed statistic images
Assuming the Gaussianised t-statistic is a strictly stationary discrete standard

Gaussian (zero mean, unit variance) random field, under the omnibus null hypothesis, the
variance-covariance matrix of partial derivatives of the secondary smoothed Gaussianised
t-statistic image is ΛΛSZ = (2ΣΣ + ΛΛZ

-1)-1 (appendix C:8). Here, this gives:

ΛΛ̂SZ = 






0.0171 0 0
0 0.0164 0
0 0 0.0254

This corresponds to a Gaussian PRF of FWHM 12.73mm×13.01mm×10.44mm.
It is interesting to note that the estimated variances of the numerical partial

derivatives within the secondary smoothed Gaussianised t-statistic image corresponds to
a Gaussian PRF of FWHM 7.11mm×7.53mm×7.00mm. This is much lower than the
theoretical one derived from the Gaussianised t-statistic, because the null hypothesis is
not true. The signal in the Gaussianised t-statistic image is magnified by the
normalisation, resulting in a statistic image whose voxel level variance is much greater
than the hypothesised unit variance. This gives large variances and covariances for the
partial derivatives (appendix C:9), leading to an underestimate of the smoothness.
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Bonferroni assessment of the secondary smoothed Gaussianised t-statistic image
To illustrate the power of secondary smoothing, consider a Bonferroni analysis of

the secondary smoothed Gaussianised t-statistic image.
The null hypothesis at voxel k is Hk: µk = 0, where µk is the mean of the assumed

Gaussian distribution at that voxel, SZk ~ N(µk,1). The unadjusted p-value for voxel k is

then Pk = 1-Φ(SZk). Bonferroni adjusted p-values are computed as P
~

k = min{K Pk, 1}.
The Bonferroni adjusted p-values for the AC-PC plane are shown below (fig.57).
Compare these with the corresponding figure for the t-statistic (fig.50). (The p-values for
the t-statistic image and the Gaussianised t are identical, by construction of the
Gaussianised t.)
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Figure 57

(a) Mesh plot of Bonferroni single step adjusted one-sided p-values,
computed from the secondary smoothed Gaussianised t-statistic image of
fig.56. Voxels outside the intracerebral volume have been removed.
(b) Voxels with adjusted p-value below level 0.05. The outline of the
intracerebral area is superimposed. The AC-PC plane is shown.
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