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Chapter Five

An Empirical Bayesian
Approach

In this chaptethe problem of testing statistimages is reformulated as snage
segmentation problem, to which techniques from image proceasingapplied. In
particular, a Markov Randorkield is used to convey priobelief regarding the
contiguous nature of activated voxels.

The workdescribed in this chapter was presergedly at BrainPET93, thefirst
International Symposium on Quantification of Brain Function, held in Akipan. An
abstract appears in t#enals of Nuclear MedicinéHolmes &Ford, 1993a), and fall
paper in the conference proceedir@santification of Brain Function: Tracer Kinetics
and Image Analysis iPET (Holmes & Ford, 1993b).
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164 Chapter Five: An Empirical Bayesian Approach

5.1. Introduction and Motivation

In a functional mapping experiment, weay havesubstantial priorbelief or
information regarding the shape and loci of the activated areaimplestprior belief is
that activatedvoxels wil form contiguous regionSingle thresholdapproaches to
testing statistic images from functional mapping experiments voxel-by-voret dwake
use of this priomelief. Rather, theyrely onthe smoothness of the statistiage to
ensure that the set gbxels declared as “activated” form a few regions of contiguous
voxels. As we have seen, statisticages frequently exhibit a higthegree of noise,
especiallyfor statistics formed with variance estimates of few degrees of fredthsn.
can lead to isolated voxels being declared as “activated”, contrary to our prior beliefs.

To counter this, it icommon to smooth statistic images, caled secondary
smoothing. As discussed i3.8.6.6.,this increasethe signal to noise ratio faignals
greater in extent than tHdter kernel, atthe expense of resolution, anchat always
desirable. If prior belief about the contiguous nature of activated regions can be built into
a test,then such secondary smoothimgy not benecessary. In effect, the prior would
act as an “intelligent” smoothing.

Markov random fields

In theimage processintiterature, Markov Randorfields (MRFsS) have been used
successfully texpress priobeliefsabout thespatial coherence ahages in problems of
reconstruction, restoration, and segmentation, the la¢ieg the problem oflabelling
pixels with one of dinite set oflabels. Greeii1990) successfully utilises &RF to
express such priobelief when reconstructingSingle Photon Emission Computed
Tomography images. Geman @@dman(1984) consider the task of restoring a discrete
grey level imagecorrupted by theaddition of Gaussian white noise, as a segmentation
problem, using a discreteRF to model priorbelief about thelocal structure of the
labelling of pixels by their true grey level.

We shallconsider the testing scenario as a segmentation problem, eddre
voxel is to be labelled dsctivated” or mt, according to the egence againgie null
hypothesis.
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5.2. MRFs and Gibbs Distributions

We begin by briefly reviewinghe necessary theory of Markov randdields. For
further details, see one of tineany papersreviewing randonfield models forimage
analysis. A general summamyhly decoratedvith examples and algorithms, and with
extensive references, is that recently published by Dubes &1.9&4). This also appears
in Advances in Applied Statistica supplement to théournal of Applied Statisti¢s
which is devoted to statistics and images (Dubes & Jain, 1993).

5.2.1. Markov Random Fields

Consider a partition of a two-dimensional image spacé]2, into K squarepixels
{Vk}Ezl. To avoid thecomplication of edges, w&halltake theimagespace= to be the
surface of atorus, aswas considered for the Two-Stagjmulation study described
in 84.2.1. Let Wz{(}E:1 be a set oindicesfor thepixels. As usual, gixel will be
referred to by its index.

Neighbours

The firstorderneighboursof a pixelare those pixels it shareside with, whose

centres are at mostpixel unit away (Euclidean distance). The secordkerneighbours

of a pixelare those that touch it, either aside or just acorner. The second order
neighbours have centres at mé&tpixel units away (fig.70).

D@j First order neighbours
:’E’: Second order neighbours

Figure 70
First and second order neighbours in a two-dimensional image space,
partitioned into square pixels.

For eachpixel k W, definethe neighbourhood)y, to be theneighbouring pixels. The
setn,, = {Nk : kO W} is then theneighbourhood system
Definition

Consider a random field defined on the latticpirél centres, withvalue at pixek
denoted byX,. Let X be the vector opixel valuesX = (Xy,...,Xk). The randonfield X
is aMarkov Random Fielavith respect to a neighbourhood systgm if and only if;

a) PI’Q(k: Xk | Xi :Xi, i O W\{k}) = Pr(Xk :Xk | Xi :Xi, i O r]k)
b) PrX =x) > 0O for all possible configuratioms= (Xy,...,Xg)

Here \ denotes set exclusion, so A\B is the set of elements in A but not B.
Condition(a) is known as the Markov properiyhis states that thprobability of
X having acertain value at a particular pixel, givéime values of X elsewhere, is
dependenbnly on the values ofX in the neighbourhood of thgixel. The positivity
condition (b), statethatall combinations of pixel valuesrepossible. If in addition, the
probability ofthe field taking any value at a pixel, givehe values athe neighbouring
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pixels, is independent ttie particulapixel under consideration (condition (c)), then the
MRF is homogeneous

C)  Pride=x | X =, 1 0N = PriXc 4y =X | X 4+ =%, 1 0Ny
OkOW & k+i OW & O x,

Early work with MRFs was hampered because it wias known how to evaluate
the joint probability distribution P = x), or even how talefinethe local conditional
probabilities suchhat thejoint probability distributionwasvalid. These problemsere
solved by theHammersley-Clifforctheorem,which identifiedMRFs with Gibbs random
fields.

5.2.2. Gibbs Random Fields

Gibbs Random FieldssRrs) originated in statistical physics, where it was desired
to deduce the largscale properties of a latti@ystem from local models. Isi$952)
pioneered the approach fonodelling the behaviour of ferromagneticaterial by
considering onlyhe interaction of théspins” of neighbouringattoms. Twaoneighbouring
atoms of oppositaspin were considered to have a positpatential The state of the
lattice was characterised by ienergy computed as thesum ofthe potentials
Configurations of low energy are therefore more stable than those of high energy.

The terminology of statisticgdhysics is widelyused in this branch of statistical
image analysisand the concepts are somewhat easier to understancagpheation to
ferromagnetic materials is kept in mind.

Cliques

| A clique under a neighbourhood systemaisy set ofpixels, allpossible pairs of
which are neighbourdzor the second order neighbourh@ydtemthe cliquesare all
groupings of pixels with shapes gwen in fig71. For afirst order neighbourhood
system, onlyshapesl,2 & 3apply. Let C(n,,) be set of thecliques of W under
neighbourhood syster,.

4 5 . 6 7 8 9 10

Figure 71
Clique types for first and secondrder neighbourhoodsystems of
two-dimensional fields. Types 1-3 constitute the clique types for a first order
neighbourhood system, typ&s10 thetypes for a seconarder systemType
1 cliques are known asngletoncliques, types 2-5 gmir cliques.
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Gibbs Random Fields
A randomfield X is a Gibbsrandomfield if and only if the probability (density)
function has the following form:

e-UX)
PriX =x) = 7

Here, UK) is calledthe energy functionThe higheithe energy of the configuration, the
lower the probability. The denominator, Z, he partition function a normalising
constant obtained bgummingthe numerator ovall possible configurations. The
partition function isusually not computable. Foexample, asmall field of K = 64x64
pixels, each of which can take only two values, H3%5possible configurations!

We canspecifythe energy function in terms pbtentialsfor theindividual cliqgues
of a neighbourhood systeffor cliquec O C(n) let V(x) be its potential, a function of
the values of the pixels in the clique. Then, define the energy function as follows:

U= 5 Ve
c dC(ny)

The Hammersley-Cliffordtheorem states that a randdmld X is a MRF with
respect to the neighbourhosgistemn),,, if andonly if X is a Gibbs distribution, with
potentials defined othe cliques ofthat neighbourhoodystem. (See Bes#&t974) for a
proof.) Thus, it is usual to definev&F through its representation asRF, by specifying
clique potentials.

Discrete M colourGRF

Consider henceforth the discrete randaail X, where eaclpixel cantake values
in {0,1,..., M-1}, corresponding t®/ “colours”.

A simple scheme for constructingcaF is described by Derin and Elliq&987).
They assign a potential k) = -(; to cliques of type& whenall the pixels in thelique
have thesame value, and{i if any of the pixels arelifferent €y = 0). Configurations
containing cliques of clique typewith differing pixel values have higher energy and
hence lower probability.

For the second order neighbourhatique types (figr1), X is defined as arF by
taking theclique potential functiong;, as zero for thesingleton cliques{g = 0), 3 for
the pair cliques where a side is shadgd-@ for t = 2,3),/v2 for the paircliques where
only acorner is shared{ = p/vV2 for t = 4,5),andzero for the othecliques. Thesingle
parameter3 specifies the dependency between pixel and its neighbours, and
characterises the strength of the field.
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For the discreteM colour GRF, we can deduce thiecal conditional probability
structure in the usual way:

Pr(X =x)
PreX = x;, iDWA{K})

PrXic = [ X =, 1 DW\{k}) =

O
o, 4%
O
{x" x,-)gleW\{k}}eXF@DC%W\)/C @

g

exrﬁcmc(%, ):/Dcc(}X)E

= o (66)

[l
ex x")J
{xx;= x,ZD\N\{k}} HCDC% ricic) E

The denominator in each of the above expressions sitheofthe numerator for
all possible labellings aof, as one of {0,1,., M-1}, and as such is simplyr@rmalising
constant. The setx{: xj =x , 1 OW\{k}} is simply the set ofM configurationghat are
the same ax, save apixel k, whichtakesall possible value§,1,...,M-1. Note that the
sums of clique potentials in eqn.66 are only for those cliques containing. pikels, the
conditional probabilityfor thevalue at voxek, giventhe values elsewhere, deperugy
on the values of the field at the neighbourpixél k, the Markov property. The partition
function does not appear, so computation is straightforward.
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5.3.Image Segmentation

To illustrate the techniqueshich we shalluse inour Bayesiarntest for a statistic
image from PET, consider the following simple image segmentation problem.

5.3.1. Segmentation

Consider arue imageR consisting of onlyM known greylevels. Labelhe grey
levels with unique colour labels from the set {0,1M-1}, such that labek corresponds
to a pixelgrey value of g{). CallthelabellingX. Suppose that we obserRRewith added
Gaussian white noise of variangé, andthat fromthis noisy versionY, we wish to
estimate the original cololabellingX. Thelikelihood Pr{y =y | X = x) of anyparticular
labelling giventhe data is simply the product, o\ar pixels, ofthe univariate normal
pixel likelihoods Pr{y =y | Xx = X):

(i - 96))2
QX% 20_2
Pr(¥ic = Yi | X =% = oo? (67)

MRF Prior & posterior

The maximumlikelihood estimaté&, simply labels each pixeith the label of the
grey level nearest to the observed value. Expressing jpetiefs PrK = x) about the
expected contiguous nature of the collalelling via a discret®RF with parametef,
as definechbove, we obtain the posterior distribution for ldi®elling X, giventhe data
Y, by Bayes theorem as:

PriX=x|Y=y) OPr(Y=y|[X=x)xPr(X=x)

[l 0 - 20 U
0 exp@—k;v En(o) +%ﬁ U(x)@ (68)

Assumingo is known, the posterior (eqn.68) is als@rF (and hence aRF),
since the contribution of thékelihood is anextra term in the energyunction
corresponding to potentials for tegleton cliques. The constant of proportionality is
thus the posterior partition function.

MPM estimate

A suitable estimate of the colourlabelling x is then theMaximum Posterior
Marginal (MPM) estimate, which maximisesthe marginal posterior probabilities
PriXx =x¢ | Y =y ). Thisthereforeminimisesthe expectedumber of misclassifiepixels
under the posterior. A vague prior, wigir0, expresses no prideelief, and thevrPm
labelling is identical to the maximum likelihood estimate.

Unfortunately themarginal probabilitiecannot be evaluated directly, because of
the uncomputable posterior partition function. Howensalisations ofGRFs can be
generated usinthe Gibbs samplerand from these realisations estimatethefimarginal
posterior probabilities obtained.
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5.3.2. The Gibbs sampler

The Gibbs sampler has radicalthanged théace of Bayesian inferenaaver the
pastfew yearsgenabling complexosterior distributions to be dealt widasily. In the
current context, a sequence of randietds {X°, X1,..., X9,..., X%} is generatedrom
an arbitraryinitial colour labellingX0. Here, take thénitial colour labelling as the

Maximum Likelihoodestimate X0 =X. Eachfield in the sequence is generated from the
previous one byisiting each pixel inurn, computing thdocal conditionalposterior
probabilitiesfor each of thévl colour labels (givethe currentabels ofthe neighbouring
pixels and thelata),and then choosing a new coldaiel for pixel k according to these
probabilities. The sequenc&{ X1,...} can be proved to be a Markov Chaimith
equilibrium distribution PrK=x]|Y =y), the posterior distribution. Hence,

Prix9=x) 2. PrX =x | Y =y). So,for largeqg, X% may beregarded as a realisation of

the posterior distribution fanyq = gg. Frequentlygg is calledthe “burn in” period. See
Smith & Robert§1993) and Besag & Green (1993) for a rigoraliscussion of the
method.

The setS={X%, X%tt X%+t2L  X%+tNY can be regarded as an independent
random sample of sizefrom the posterior distribution, provided thgacingt is chosen
to overcome the serial correlation between succelsdigings.The natural estimates of
the marginalposteriorprobabilities of each colour label at pixel PriX, =x | Y =y),
are the proportions ofabellings inS with pixel k labelled thatcolour. Dependence
between the elements $tloes not bias these estimates, 5@y be taken as 1.

5.3.3. Example

Figure 72a depicts a grey scale scenalefined on a 6464 pixellation of the
surface of aorus,with 3 grey leveld-2,0,+2}. This scene is a realisation ofGaF X,
with clique potentials characterised$y0.4 in the scheme described above. (The colour
labels are {2,0,1} respectively:g(0) = 0; g(1) = +2; g(2) =-2.) Theealisation was
generated byunning 50full sweeps of th&ibbs Sampler from ainitial random colour
labelling.
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Note that although thémage ismainly coherent, isolated pixels are present.
Regarding this image as our unobservable image add standard Gaussian white noise
to it to generat®ur olservedmagey, depicted in Figure 72b. Froy an estimate of,
and hence aof is required.

Figure 72
(a) Examplegrey level scener,, a realisation of a three colo@rF with
clique potential functions parameterised@y 0.4. (b) Thegrey scale scene
corrupted by the addition of Gaussian white noiserof variance, tajive
an example observable image

The maximumlikelihood labelling isdepicted infig.73, with the appropriatgrey
levels. This segmentation is rather noisy, and misclassifies 891 of the 2a&%6)(

Figure 73
Maximum likelihood estimate of the truscener, obtained from the
corrupted sceng, given thegrey levels corresponding tbe threecolour
labels, and the variance of the Gaussian white noise process.

Including prior belief gives avast improvement. Figure 74 depicts estimates of the

MPM estimate, for priorswith strengths parameterised By0, 3=0.2,$=0.4 & p=0.6.
Themarginalposteriorprobabilities in each caseere estimatedsingthe Gibbs sampler
as described above, with 20 iterations burn in and the 2000 subsequent iterations as

sample. The casg=0 gives a vaguerior, where the posterior is proportional to the
likelihood. ThemPm estimatex in this case is therefore equivalent tt® maximum



172 Chapter Five: An Empirical Bayesian Approach

likelihood estimat&. The estimate#iPm estimate for this vague pri¢fig.74a) differs
from the truemL at only 28 pixels ¥0.7%). This demonstrates thegalidity of the
computer programs used. However, in this case of vagag successive realisations
from the Gibbs sampleare independemealisations othe posteriorwhich isnot the

case for non-vague priors. Thus, thenber oferrors inestimation o is notindicative
of the number of errors in estimating them estimates for non-vague priors.

As can be seen, the incorporation of prior knowleslgaut thespatial coherence
of the image affords considerable improvemeover the maximum likelihood
segmentation, althougioo strong a priormakesthe segmentatiotioo smooth”. The
numbers of misclassified pixels are 285/%), 124 (3.0%) & 142 (3.5%).

Figure 74
Estimates of the Maximum Posterior Marginal estimates of the true scene
for prior strengths of (€3=0; (b) 3=0.2; (c¢)3=0.4; & (d)B=0.6.

The prioreffectivelyacts as amtelligent filter ofthe colourdabelling.Indeed,this
Bayesian approach can be viewedlassicakerms as a penaliséilelihood method, the
MRF providing a functional form ofhe “penalty” of labelling a pixel differently to its
neighbours. It is thiproperty that motivates the use ofv&F as a prior for testing
statistic images.
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5.4.A Bayesian Segmentation Test

Consider a Gaussian statisticageY, Y ~ N(H,1). Theomnibus null hypothesis
H,\, is the intersection of thaxel hypotheses ki, = 0, kOW. The Bonferroni method
for testing a Gaussian statisimageY, tests eaclpixel individually, correcting for the
number of comparisons usitige Bonferroninequality.For a two-sided test #&vel a
this results in aprocedure where the statisticnage is thresholded above at
d1(1-a/(2K)) and below atb™l(a/(2K)) (§3.2.1.). High pixelgive significant evidence
of an increase in théest statistic, indicating positive activation, and low pixels a
significant decrease, indicating negative activation.

Segmentation formulation of Bonferroni test

We can view thetest as animage segmentation problem withree lalels:

“no activation”, “positive activation” and “negative activation”. The “no activatlabél
corresponds to a trustatistic or “greylevel” of zero,and we observe this with an added
Gaussian error. Thisvo alternativelabellings donot correspond tany particulartrue
statistic value,but if weassign artificial alternativerue values 2-1(a/(2N)) and

290 1(1-a/(2N)) to “negative activation” and “positive activation” respectively, then a
maximumlikelihood segmentation dhe statistiamagewill give the same labelling of
the pixels as would the Bonferroni test.

Formulated as a segmentation problem thus, prior belief can be included. This leads
to a Bayesian segmentation “testas a segmentation of the statistitage with the
(artificial) grey leveldor thelabellings as giveabove. To evaluate this ideaienulation
study was carried out.
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5.5. Simulation Study

5.5.1.Simulation methods

Null statistic images

Null statisticimageswere generated iexactly the same manner athe subject
difference images othe Two-Stagsimulation, described in482.2. Briefly, Gaussian
white noisefields were generated on a4 pixellation ofthe surface of #orus.These
were smoothed with an isotropic Gaussilier kernel ofstandard deviation #(8In(2)),
corresponding to awHM of 5 pixels (10mnfor 2mm square pixels). Thélter kernel
wasimplemented as a movirayerage filter, with weights computed by evaluating the
kernel on a regular X147 array of points 1 unit (pixe§part. Thevariance otthe initial
white noise process was chosentsat thenull statisticimage hadgixel valueswith unit
variance.

Signal

Departures from the null hypothesis were simulated by adding a signal image to the
simulated nulktatistic imagesTwo signalimageswere considered. The first wazero
image, used texaminethe truelevel ofthe testThe second was ttiecal signal used in
the Two-Stageimulation (8.2.2.).This is a centrallyocated isotropic Gaussi&ernel
of standard deviation ¥{2In(2)), corresponding to a centrallycated Gaussian point
response function withwHM of 5 pixels, convolved with itselfhe signal was scaled to
have maximum height, or amplitude, of 4.5.

Tests

The artificial segmentation formulation of the Bonferraeist using estimated
posterior probabilities for prior strengthsfbf 0, 1, 2, 3, was compared with the results
of the actual Bonferroriest. Foreach combination of signal and prior strentjié two
tests were compared on separate sessnailated statistic images. With vaguor the
significance labelling fronthe two testsshould be the same, however there will be
samplingerror due theestimation of themarginal posterior probabilities. A burn in
period of 10 iterations of th&ibbs samplewvas adoptedand the subsequent 1000
realisations used to estimake marginalposteriorprobabilities. Clearly it is desirable to
estimate these probabilities fairly accurately, espediatiye near 0.5 where thearginal
posteriorprobabilitiesfor two labellingsare close. However, it is the properties of the
resultantest that are of interest, rathtean theniceties ofMarkov ChainMonte-Carlo,
and small symmetrical errors shouldn’t impair the qualities of the test.
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5.5.2. Results

Zero signal

The results of thesimulation studyfor the pure noisgest imagesare given
below (table 75). The-values giverare for thenull hypothesighat both testhiave the
same size, against a two sided alternative, computed using McNemars test. Both tests are
ultra-conservative, the test images being very smooth. Although thitie evidence, it
appears that, as the prior strengtineased, the Basian segmentatidestbecomes
progressively more conservative titae Bonferrontest. A 95%confidence interval for
the truesize ofthelevel a = 0.05Bonferronitest is (0.0092, 0.0148), computed to 4dp
using the normal approximation to the Binomial.

1 ="reject’ H, Bonferroni
Zero signal 0 1
MpMm3=0.0 O 984 0 984
p=1 1 1 15 16
Mpm3=0.1 O 986 3 989
p=0.25 1 0 11 11
Mpm3=0.2 O 988 9 997
p=0.0039 1 0 3 3
Mpm =03 O 993 6 999
p=0.0312 1 0 1 1
Bonferroni 3952 48
Table 75

Summary of simulation results for zero signal

Focal signal

The results of theimulationfor thecentrallylocated focakignal, scaled to have a
maxima of4.5, aregiven in table 76. Increasintpe strength of the prionakes the
BayesiarvPM test less powerful than the Bonferroni method.

1 ="reject’ H, Bonferroni
Focal signal 0 1
mPM B=0.0 O 172 2 174
p=1 1 1 325 326
MPMB=0.1 O 173 31 204
p= ox1010 1 0 296 296
MPM B=0.2 O 190 57 247
p=1x10%" 1 0 253 253
MPM 3=0.3 O 182 81 263
p= 8x10%° 1 0 237 237
Bonferroni 718 1282
Table 76

Summary of simulation results for focal signal.
All rejections of the omnibus hypothesig, Hre considered.
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5.6. PET Example

Figure 77 shows thec-pPc plane ofthet-statisticimagefor the “V5” studysubject
difference imagesafter transformation to have a standard Gaussian distribution under
the null hypotheses. The pairdestatistic was constructed as described2r88.., and
was depicted previously i28.1. This t-statisticimagewas Gaussianised Ibgplacing
each pixel t value with the standard Normal ordinate with geme extremum
probability. (Recallthe discussion of “transform functions” of38.3., and see
appendix E for computational details.)

Let this two dimensional image BeTheAc-Pc plane is discretised int® = 65x87
square pixels of side 2mm. For consistency with the preeixperiments in this chapter,
periodic boundary conditions were assumed: The rectangulage space was
considered as the unfolded surface tdras. Thetop andbottom,and left and right of
the imagespace are taken to abuespectively. Theset W was taken to be the set of
(indicesof) all K voxels, rather than the subset corresponding to the intracerebral area as
in other chapters. Th&oxel hypotheses [4,=0, were testedagainst two-sided
alternatives, where thpixel valuesy, are assumed to be drawn fromGaussian
distribution with meam, and unit variance.
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Figure 77
Mesh plot of “Gaussianised*statistic forthe “V5” study, computed using
the proportional scaling approaand paired-statistic, described in §2.3.1.
The x andy axes are graduated in millimetres, according to the Talairach
system. Thec-pc plane is shown.

Bonferroni assessment

A two-sided Bonferroni assessment of the-PC plane of the Gaussianised
t-statistic image, correcting for the number of pixels in the pleads tathe rejection of
H, at 140pixels £2.5%), shown irfigure 78. Thesmallregions of negative activation
were considered to be artefacts. Mpremary (or secondary) smoothing woulthve
removed these artefacts, but would also have smoothed out the signal.
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Figure 78
(a) Image ofac-pc plane of Gaussianisedstatistic forthe “V5” study,
shown as a mesh plot in fig.77. (b) Results of Bonferroni assessntéig of
plane, correctindor the number of pixels in the plane. Pixels wittlues in
the upper tail of the null distribution ashown painted grey, those in the
lower tail black. The outline of the intracerebral area is shown for
orientation.

BayesianmPm segmentation “test”

The Gaussianisadstatistic,y, was assessed usitige BagsianMPM segmentation
test,with prior strengths parameterised [by 0.1, 0.2, & 0.3. Thaurtificial alternative
grey valuesfor the“positive activation” and “negative activatiotdbels were set at
+201(1-a/2K), for level o =0.05. Once again, theposterior probabilities were
estimated from 1000 successive realisations froreibles samplemfter a burn in of 10
iterations. The results are shownfigure 79. As can be seeiie smallerregions are
successively eliminated dke prior strength is increased, and the shape daihe
activated area is rounded off.
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Figure 79
Results of BayesiamPm segmentation assessments ofatec plane of the
Gaussianised “V5” study-statistic. The priorsisedare parameterised by
(a) B=0.0 (vague prior), (b$=0.1, (c)B=0.2, & (d)p=0.4. Pixelslabelled
“positively activated” are showgrey, those labelled “negatively activated”
as black. The outline of the intracerebral area is shfowwrientation. The
large region of positive activation corresponds to the primary visual cortex.
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5.7. Conclusions

In this chapter arattempthas been made to inclugeor belief regarding the
contiguous nature of activatgulxels, intothe testing procedur&his prior belief was
expressed through a discreter, motivated by thaisefulness of this model in digital
image processing.

Summary of the approach

The exact method proposed is based on the simple segmentation problem, where a
grey scale scene is sought from an observabormupted by added Gssian white noise.
This Bayesian segmentation requires knowledgaeotruegrey levels, anthe variance
of the white noise process.

For a standard Gaussian statigtiage, we wish to label each piXebxel) as “not
activated”, “negatively activated” or“positively activated”. Simple threshold tests, the
simplest of which is the Bonferroni, achieve this by thresholding the statiatie above
and below, and labelling suprathreshokkfsi(voxels) accordingly. Assignirrtificial”
grey levels tathe activatedabels thatare twice the appropriate threshold, so that the
likelihoods ofthe labellingscross at the thresholds, results imia segmentatiorthat
duplicates the results of thest. The BayesianMPM segmentatioriest proposedere
simply seeks to include a prior into this segmentation.

Although specificstatistic valuesare specifiedfor pixelslabelled as “positively
activated” and'negativelyactivated”, the alternativieypothesis is stiltomposite since
very extreme values will still be nearest to the grey level for the appropriate labelling.

Extensions

As presented here, the thresholds for a two-sided Bonfdasinhave beeunsed
to set the threshold€learly thresholds fromany validtestcould be used. Extension of
the approach to three dimensions is trivial, as is modification for a one sided test.

Conservativeness

The Bonferroni method is conservative for testing iplelthypotheseshat are
dependent. The addition of pribeliefs tothe Bonferroni methodia the BaysianMpm
segmentationestformulated above, results iness powerfutest. Asmentioned above,

a BayesiarmPMm segmentationest could be constructedsing threshold$or any valid
voxel-by-voxel test employing a fixedthreshold. However, as demonstrated for the
Bonferroni approach, the BasianMPM segmentatioriest is lesspowerful than the
thresholding test on which it is based.

The inclusion ofprior belief via aMRF biasesthe labelling of each pixelowards
that of themajority of its neighbours. Regions of activatame convex, so pixels on the
boundary of this region will have less activated neighbouring pixels than activated ones.
Thus, thenclusion ofprior belief will weaken theisignificance, reducinthe size of the
activated region. However, the resultingellingsare more contiguous, as illustrated in
thePET example.

Tuning

To overcome this conservativenets®e BayesiamPM segmentatiomestcould be
“tuned”, by setting the artificial statistic levels for the “activated” labellings closasrto
so that a test with size approximately equal to the desired level was obtained.

For instance, a BayesiamM test based on a simple pixel threshol@ok(1-a'/2),
with a'=0.0001,gives 31 rejections dhe omnibus nullhypothesisover 500 zersignal
simulations afprior strength=0.2. An approximate 95% CI for tleze ofthe test is
therefore (0.0409,0.0831), which includes 0.05.
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Such tuning requires large numbersnafl statistic imageswhich canonly be
obtained by simulation. The robustnessests based osimulated nulktatisticimages is
still in doubt, as wasdiscussed with regard to suprathreshold clsretests in 83.5.1.,
and we shall not pursue this line of investigation.

Contiguous labellings

For (expectediliffuse activations it ibest to smooth and usdestmethod taking
into account thespatial redundancy due to smoothn&ss.extremely focal activations,
or statisticimages with adegree ofhigh frequencynoise, the Bagsian approach
incorporatesour prior belief well,and works as aimtelligent smoothing othe pixel
labelling. Although the Bagsiantest formulated here is conservative, it illustrates the
usefulness afirRFs for conveying prior belief.

With hindsight,the simulation experimenappears inadequate for assessing the
promise of the Bayesian approach, since the simulated statistic images were very smooth.

Bayesian rigour

The use of Bay®antools inthis context ismerely a means to and, that end
being acontiguouspixel labelling. This inot a rigorougempirical Bayesiampproach.
The model used iglearly an oversimplification. Atatisticimage frompeT clearly does
not consist of thredevels for “negative activation”, “no activation” arfgositive
activation” to which white Gaussian noise is added.

The noise process is smooth. Considetiteggysegmentation of a discrete glayel
scene to whiclsmooth noise has been added, ghsterior is not aiRF as specified in
eqgn.68, since the likelihood Pr{y =y |X =x) is not the product of thenivariate
likelihoods ofeqn.67. If the noise process can be modelled as a (continuRrEs3ay a
Gaussian Markov random field, thére posterior can be computed, and li&& on the
neighbourhood system that is the union of those for the prior and the noise.

This modificationfor smooth noise istill inappropriate for statistic imagesnce
the “true” statisticimage isnot discrete. In short, thesegmentation model is too
simplistic for a rigorousempirical Bayesiarapproach to segmenting statisiinages
from PET.

Summary

A simple attempt toembody prior belief regarding the contiguous nature of
activated pixels into aignificancetest for statisticimages has begoresented. AVRF
prior has beeapplied to a simpléhreshold method, viewed as a segmentation problem.
The resulting Bay@anMPM segmentation “test” ikess powerful thahe thresholding
test uponwhich it is based, but thédentified activated regions are more contiguous.
Given the operationatomplexities ofthe method, and thdifficulty of “tuning”, the
proposed method is perhapsnsigned to the large pile imleasthat “didn’t quite make
it”.
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