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Chapter Six

A Non-Parametric Approach

In this chapter, a non-parametric approach to assessing functional mapping
experiments is presented. A multiple comparisons randomisation test is developed for
simple activation studies, which is shown to maintain strong control over familywise
Type I error. A step-down procedure with strong control is introduced, and
computationally feasible algorithms presented. The methods are illustrated on a real PET

data set, with a pseudo t-statistic image formed with a smoothed variance estimate. For
the given data set the approach is found to outperform many of the parametric methods,
particularly with the pseudo t-statistic. This, together with the flexibility and guaranteed
validity of a non-parametric method, makes the approach very attractive, despite the
computational burden imposed. The practicalities of the method are discussed, including
extensions to other experimental paradigms, other test statistics, and permutation tests.

A paper, with similar content to this chapter, has been accepted for publication in
the Journal of Cerebral Blood Flow and Metabolism (Holmes et al., 1995).

181
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6.1. Introduction and Motivation

Current methods for assessing the significance of statistic images are either
parametric, or rely on simulation. Currently available approaches were discussed
extensively in chapter 3, where they were found to be lacking in some areas.

Shortcomings of parametric methods
Parametric approaches are based on the assumption of specific forms of probability

distribution for the voxel values in the statistic images. Hypotheses are specified in terms
of the parameters of the assumed distributions. Usually, scan data are taken to be
normally distributed, giving known distributional forms for certain statistics. These
statistic images are then assessed using (approximate) results for continuous random
fields, under the assumption that the statistic image is a good lattice representation of a
continuous random field with matching marginal distribution and variance-covariance
matrix of partial derivatives. This use of continuous random fields was seen to be
particularly inappropriate for t and F statistics whose denominator has low degrees of
freedom (§3.3.6.5.). Thus, parametric methods restrict the form of the voxel statistic to
those for which distributional results are available, and rely on a multitude of
assumptions and approximations, the validity of which is often in doubt, but seldom
checked.

Simulation approaches require the simulation of null statistic images whose
properties match those of true null statistic images, a match which is often dubious as
discussed in §3.5.1.

Non-parametric methods
Having encountered problems with classical parametric methods when analysing

EEG data, Blair et al. (1994) applied non-parametric methods. Originally expounded by
Fisher (1935), Pitman (1937a, 1937b), and later Edgington (1964, 1969a, 1980), these
methods are receiving renewed interest as modern computing power makes the
computations involved feasible. See Edgington (1969a) for a thorough and readable
exposition of randomisation tests.

Parametric methods make formal assumptions about the underlying probability
model, up to the level of a set of unknown parameters. Scientific hypotheses formulated
in terms of these parameters are then tested on the basis of the assumptions. In contrast,
non-parametric methods test simple hypotheses about the mechanism generating the
data, using minimal assumptions.

Non-parametric approach for functional mapping experiments
In the remainder of this chapter the theory for randomisation and permutation tests

for functional mapping experiments is developed. For simplicity, we shall concentrate on
the simple multiple subject activation experiment, with statistic image to be assessed
using a single threshold. As we shall see, the approach is by no means limited to this
scenario.
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6.2. Theory

The rationale behind randomisation tests and permutation tests is intuitive and
easily understood. In a simple activation experiment, the scans are labelled as “baseline”
or “active” according to the condition under which the scan was acquired, and a statistic
image is formed on the basis of these labels. If there is really no activation effect then the
labelling of the scans as “baseline” and “active” are artificial, and any labelling of the
scans would lead to an equally plausible statistic image. Under the null hypothesis that
the labelling is arbitrary, the observed statistic image is randomly chosen from the set of
those formed with all possible labellings. If each possible statistic image is summarised by
a single statistic, then the probability of observing a statistic more extreme than a given
value, is simply the proportion of the possible statistic images with summary statistic
exceeding that value. Hence, p-values can be computed and tests derived. In this section
we formalise this heuristic argument, concentrating on randomisation tests, where the
probabilistic justification for the method comes from the initial random assignment of
conditions to scan times.

Experiment
Consider the following simple multi-subject activation experiment with N subjects,

each scanned repeatedly under two conditions denoted by A and B, with M repetitions of
each condition. The conditions are presented alternately to each individual. Half the
subjects are randomly chosen to receive condition A first, then B, followed by (M-1)
further AB pairs (AB order, conditions presented ABAB…). The other half of the subjects
receive condition B first (BA order, conditions presented BABA…). The randomisation of
subjects to condition presentation order in this way prevents linear time effects
confounding any condition effect in the statistic image.

6.2.1. Statistic images
We shall consider a proportional scaling approach to the normalisation for changes

in gCBF (gA), constructing paired t-statistic images as described in §2.3.1., generalising
to “pseudo” t-statistics calculated using smoothed variance images. We adopt this
approach because of its simplicity, robustness, and because it illustrates some of the
problems with statistic images with low degrees of freedom. Note that any method for
producing (statistic) images, whose extreme values indicate activation, can be used. In
particular, more general modelling of the effect of global changes via ANCOVA is
possible, at an increased computational burden.

Notation
Recall our notation: Y'ijqk denotes the rCBF (rA) measurement at voxel k =1,…,K,

of scan j =1,…,M, under condition q = 0,1 (0=“rest”), on subject i =1,…N; after
normalisation by proportional scaling as described in §2.1.2. Let W be the set of (indices)
of the voxels covering the region of interest, W={1,…,K}. Let xk be the centre of voxel
k.
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Paired t-statistic image
The paired t-statistic image for the study is computed as described in §2.3.1.1. To

recap, the statistic at voxel k, Tk, is given by:

Tk = 
∆ •k

S 2
k /N

(21)

where ∆ik = Y' i•1k - Y' i•0k (20)
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Variance “smoothing”
Assuming ∆ik ~ N(µk,σ2

k); then under Hk:µk= 0, Tk~tN-1, a Student’s t distribution

with N-1 degrees of freedom. Since the number of subjects, N, is typically between six
and twelve, the degrees of freedom are low, and the t-statistic image exhibits a high
degree of (spatial) noise. As discussed in §3.3.6.5., and as seen for the “V5” study data
(§2.6.1.), this noise is inherited from the sample variance image.

However, physical and physiological considerations would suggest that the true
error variance image is smooth, being approximately constant over small localities. This
suggests the use of a locally pooled variance estimate, formed by pooling variance
estimates across neighbouring voxels, possibly weighting the contribution of voxels to
reflect their displacement from the voxel where the estimate is sought. This effectively
smoothes the variance image, giving smooth statistic images with no loss of resolution.
The noise has been smoothed but not the signal. This idea is not new, but has not been
pursued until now because the distribution of these locally pooled variance estimates is
unknown, precluding any analysis in a parametric manner.

Consider a weighted, locally pooled estimate of the sample variance at voxel k,
SSk, obtained by convolving a Gaussian kernel of dispersion ΣΣ with the voxel level
sample variance image (eqn.69):
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Here f(x) = exp(-xTΣΣ-1x/2) / (2π)D |ΣΣ| is the Gaussian kernel. Since summation is over
the intracerebral voxels, the filter kernel is truncated at the edge of the intracerebral
volume.
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“Pseudo” t-statistic image
Using this smoothed sample variance in the formula for the t-statistic (eqn.21),

gives us a pseudo t-statistic image (eqn.70):

Tk = 
∆ •k

SS 2k /N
(70)

We shall use the same notation (Tk) for both the pseudo t-statistics and the “raw” ones,
since the theory to be presented is applicable in either case.

6.2.2. Null hypothesis and labellings
If the two conditions of the experiment affect the brain equally, then, for any

particular scan, the acquired image would have been the same had the scan been acquired
under the other condition. This leads to voxel hypotheses for no activation at each voxel
as:

Hk :  
Each subject would have given the same set of rCBF (rA) 
measurements at voxel k, were the conditions for that subject reversed

The hypotheses relate to the data, which are regarded as fixed. Under the omnibus
hypothesis HW, any of the possible allocations of conditions to scan times would have
given us the same scans. Only the labels of the scans as A and B would be different, and
under HW, the labels of the scans as A or B are arbitrary. The possible labellings are those
that could have arisen out of the initial randomisation. In this case the possible labellings
are those with half the subjects scans labelled in AB order and half BA order, giving
L = NCN/2 = N!/((N/2)!)2 possibilities. Thus, under HW, if we re-randomise the labels on
the scans to correspond to another possible labelling, the statistic image computed on the
basis of these labels is just as likely as the statistic image computed using the labelling of
the experiment, because the initial randomisation could equally well have allocated this
alternative labelling.

Re-labelled t-statistic images
For the experimental situation under consideration, the possible labellings are of

ABAB… or BABA… for each subjects scans. That is, each subjects scans are labelled
either the same as in the actual experiment, or completely the opposite. Thus, each
possible labelling can be specified by specifying for each subject whether the labelling is
identical or opposite to the actual labelling of the experiment. Let lδδ = (lδ1,…,lδN),
l =1,…,L, be a set of N-vectors with elements lδi = +1 if under labelling l subject i is
labelled identically to the actual experiment, and lδi = –1 if the labelling is the opposite.
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Let ltk be the value at voxel k of the t-statistic image computed for labelling l of the
scans, for l = 1,…,L. Then ltk can be easily computed as:

ltk = 
l∆ •k

lSk
 2/N

(71)

where l∆ •k =  
1
N ∑
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with ∆ik = Y' i•1k - Y' i•0k as before (20)
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Thus, provided the sum of the squares of the subject differences is retained, the
t-statistic for each labelling only requires the computation of the new study mean

difference image, with voxel values l∆ •k, and a few computations to derive the sample

variance and t-statistic image. For “pseudo” t-statistic images, the sample variance image
must be smoothed before computation of the t-statistic image.

A further computational “trick” arises from the observation that for each labelling
of the scans, the opposite labelling is also possible, and the t-statistic images for these
two opposite labellings are negatives of one another. Hence, t-statistic images need only
be computed for half of the possible labellings.

Usually, labelling l =1 is taken to be the labelling corresponding to the actual

conditions of the experiment, so 1δi = +1. In this case, l∆ •k = ∆ •k, 1Sk
 2 = Sk

 2, and

1tk = Tk.

Randomisation distributions
For a single threshold test, rejection or acceptance of the omnibus hypothesis is

determined by the maximum value in the statistic image. The consideration of a maximal
statistic deals with the multiple comparisons problem. Let Tmax/W denote the maximum
of the observed statistic image T searched over voxels (with indices) in the set W;
Tmax/W = max{Tk : k∈W}. It is the distribution of this maximal statistic that is of
interest.

Under HW, the statistic images corresponding to all possible labellings are equally
likely, so the maximal statistics of these images are also equally likely. Let ltmax/W be the
maximum value (searched over the intracerebral voxels W) of the statistic image
computed for labelling l; l =1,…,L. This set of statistics, each corresponding to a
possible randomisation of the labels, we call the randomisation values for the maximal
statistic. When HW is true, Tmax/W is as likely as any of the randomisation values,
because the corresponding labellings were equally likely to have been allocated in the
initial selection of labels for the experiment. This gives the randomisation distribution of
the maximal statistic, given the data and the assumption that the omnibus hypothesis HW
is true, as Pr(Tmax/W = ltmax/W | HW) = 1/L (assuming that the ltmax/W are distinct).
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6.2.3. Single threshold test
From the above, the probability (under HW) of observing a statistic image with

maximum intracerebral value as, or more extreme than, the observed value Tmax/W, is
simply the proportion of randomisation values greater than or equal to Tmax/W. This
gives a p-value for a one sided test of the omnibus null hypothesis.

This p-value will be less than 0.05 if Tmax/W is in the largest 5% of the
randomisation values, which it is if and only if it is greater than the 95th percentile of the
randomisation values. Thus for a test with weak control over FWE at level 0.05, a
suitable critical value is this 95th percentile. The probability of rejecting a true omnibus
null hypothesis is the probability that any voxels in the observed statistic image have
values exceeding the critical threshold. If any voxel values exceed the threshold then the
maximal one does, and the probability of this is at most 0.05 when the omnibus null
hypothesis is true.

In general, for a level α test, let c = αL , αL rounded down. The appropriate
critical value is then the c+1 th largest of the ltmax/W, which we denote by (c+1)tmax/W.
The observed statistic image is thresholded, declaring as activated those voxels with
value strictly greater than this critical value. There are c randomisation values strictly
greater than (c+1)tmax/W (less if (c+1)tmax/W = (c)tmax/W), so the probability of type I error
is:

Pr(Tmax/W > (c+1)tmax/W | HW) ≤ c/L = αL /L ≤ α (73)

This becomes an equality if there are no ties in the sampling distribution, and if αL is an
integer. Ties occur with probability zero for the maxima of statistic images from
continuous data. The size of the test is less than 1/L smaller than α, depending on the
rounding of αL. Weak control over Type I error is maintained. Thus, the test is (almost)
exact, with size (almost) equal to the given level α. Further, this test has strong control
over FWE:

Proof of strong control for single threshold test
To prove strong control the test has to be shown to be valid for an arbitrary subset

of the intracerebral voxels.
Consider a subset U of the intracerebral voxels, U⊆W. A randomisation test for

the omnibus null hypothesis HU for this region would proceed as above, but using the
randomisation distribution of the maximal statistic searched over the voxels in U. Denote
this maximal statistic by Tmax/U = max{Tk : k∈U}, and the randomisation values by

ltmax/U. Then, in notation corresponding to that above, the critical value is (c+1)tmax/U,
the c+1 th largest member of the sampling distribution of the maximal statistic searched
over voxels in the set U.

Clearly ltmax/U ≤ ltmax/W  l = 1,…,L; since U⊆W. This inequality also remains true
once the two randomisation distributions are ordered (appendix F). In particular

(c+1)tmax/U ≤ (c+1)tmax/W . That is, the appropriate threshold for the test applied to
volume U is at most the critical value for the threshold test for the whole intracerebral
volume W. Therefore:

Pr(Tmax/U > (c+1)tmax/W | HU) ≤ Pr(Tmax/U > (c+1)tmax/U | HU) (74)

= c/L = αL /L 

≤ α

In words: Considering voxels in the set U, the threshold computed for all the
intracerebral voxels is greater than (or equal to) that appropriate for testing HU alone,



188 Chapter Six: A Non-Parametric Approach

resulting in a valid (but possibly conservative) test for this subset of the intracerebral
voxels. Thus, a test thresholding the observed statistic image T at critical value

(c+1)tmax/W derived as above, has strong control over type I error.

Strong control with smoothed variance
The above proof relies on subset pivotality of the ltk. That is, that the t-statistic

images for all possible labellings are identical under the restrictions HU and HW, for all
voxels in U. This is assured under HU at voxel k∈U only for statistics computed locally
at that voxel. If a smoothed variance estimate is used, then this condition is not
maintained, the above proof breaks down, and strong control cannot be claimed.

However, since the effect of variance smoothing is local, it may be intuitively
claimed  that strong control is maintained in a broad sense. Consider a subset U of W,
and let U' consist of the voxels in U and those voxels surrounding U whose sample
variances contribute to the smoothed variance at voxels in U. Then, given HU' , the test
of HU is valid.

An alternative solution to this predicament is to redefine the voxel hypotheses in
terms of the computed statistic image, as follows:

Hk :  
The computed statistic at voxel k would have been the same, 
were the conditions for any of the subjects reversed

Two-sided test
For a two sided test to detect activation and deactivation, the statistic image is

thresholded in absolute value. The randomisation distribution for the maximal absolute
intracerebral value in the statistic image is computed exactly as above, with maximum
value replaced by maximum absolute value. For every possible labelling the exact
opposite labelling is also possible, giving statistic images that are the negatives of each
other, and hence with the same maximum absolute intracerebral value. Thus the
randomisation values are tied in pairs, effectively halving the number of possible
labellings.

Single-step adjusted p-value image
A p-value for the observed maximal statistic has already been derived. For other

voxels, p-values can be similarly computed. The p-value is the proportion of the
randomisation values for the maximal statistic which are greater than or equal to the
voxels value. These p-values are known as single step adjusted p-values (Westfall &

Young, 1993, §2.3.3), giving single step adjusted p-value image Pss~
 for these data:

Pss~
k =

proportion of randomisation distribution of maximal 
statistic greater than or equal to Tk

(75)

Proof of validity of single-step adjusted p-values

A voxel with associated p-value Pss~
k ≤ α, must have value (Tk) exceeded or

equalled by at most αL randomisation values for the maximal statistic, by the definition
of the adjusted p-values. There are c+1 members of the sampling distribution of the
maximal statistic greater or equal to the critical threshold (c+1)tmax/W, and since c+1 =
αL +1 > αL, Tk must exceed (c+1)tmax/W.

Similarly, if a voxel has value Tk exceeding the critical threshold (c+1)tmax/W, then
Tk must be exceeded or equalled by at most c randomisation values for the maximal
statistic, so the single step adjusted p-value at this voxel must be at most α.

Hence, thresholding the single step adjusted p-value image at α is equivalent to
thresholding the observed statistic image at (c+1)tmax/W, for c = αL.
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6.2.4. Multi-Step tests
So far, we have been considering a single threshold test, a single-step method in

the language of multiple comparisons (Hochberg & Tamhane, 1987). The critical value is
obtained from the randomisation distribution of the maximal statistic over the whole
intracerebral volume, either directly, or via adjusted p-value images. It is somewhat
disconcerting that all voxel values are compared with the distribution of the maximal one.
Shouldn’t only the observed maximal statistic be compared with this distribution?

Secondary activation conservativeness
An additional cause for concern is the observation that an activation that dominates

the statistic image, affects the randomisation distribution of the maximal statistic. A
strong activation will influence the statistic images for re-labellings, particularly those for
which the labelling is close to that of the experiment: The activation may possibly
dominate the re-labelled statistic images for some re-labellings, leading to higher values
in the randomisation distribution than were there no activation. Thus, a strong activation
could increase the critical value of the test. This does not affect the validity of the test,
but makes it more conservative for voxels other than that with maximum observed
statistic, as indicated by eqn.74. In particular, the test would be less powerful for a
secondary activation in the presence of a large primary activation, than for the secondary
activation alone. Shouldn’t regions identified as activated be disregarded, and the
sampling distribution for the maximal statistic over the remaining region used?

We now consider step-down tests, extensions of the single step procedures. These
are designed to address the issues raised above, and are likely to be more powerful.

6.2.4.1. Step-down test

The step-down test described here is a sequentially rejective test (Holm, 1979),
adapted to the current application of randomisation testing. Starting with the
intracerebral voxels, the p-value for the maximal statistic is computed as described
above. If this p-value is greater than α the omnibus hypothesis is accepted. If not, then
the voxel with maximum statistic is declared as activated, and the test is repeated on the
remaining voxels, possibly rejecting the null hypotheses for the voxel with maximal value
over this reduced set of voxels. This is repeated until a step rejects no further voxel
hypothesis, when the sequence of tests stops. Thus, activated voxels are identified, cut
out, and the remainder of the volume of interest analysed, the process iterating until no
more activated voxels are found.



190 Chapter Six: A Non-Parametric Approach

The algorithm is as follows:

1) Let k(1),…,k(K) be the indices of the intracerebral voxels, ordered such
that the corresponding voxel values in the observed t-statistic image go
from largest to smallest. That is, Tk(1) = Tmax/W, the maximum
intracerebral statistic value, and Tk(K) the minimum. (Voxels with tied
values may be ordered arbitrarily.)

2) Set i = 1, R = φ (the empty set), c = αL

3) Compute { ltmax/Wi
 }L

l =1, the L randomisation values

for the maximal value of the statistic image searched over
voxels Wi=W\R = {k(i),…,k(K)}.

4) Compute p-value P'k(i), as the proportion of the randomisation
distribution just computed greater than or equal to Tk(i)

5) If P'k(i) is less than or equal to α, then Hk(i) can be rejected: Add k(i) to
set R, increase i by one, and return to step (3). If Hk(i) cannot be
rejected, or if there are no more voxels to test, then continue to step
(6).

6) Reject voxel hypotheses Hk for voxels k∈R. If voxel hypotheses have
been rejected then the omnibus hypothesis HW is also rejected.

7) The corresponding threshold is (c+1)tmax/R  , for R=W\R. This is the

c+1 th largest member of the last sampling distribution calculated.

Algorithm (a)

Points (3)–(5) constitute a “step”. The test proceeds one voxel per step, from the
voxel with largest value in the observed statistic image, towards that with the smallest
value. The set of voxels with rejected hypotheses, R, is added to one voxel per step until
a non-significant voxel hypothesis is found, when the algorithm stops. Hk(i) is tested in
step i, at which point Wi is the set of voxels not already rejected.

This defines a protected sequence of tests. Each test “protects” those following it
in that the omnibus null hypothesis for the remaining region must be rejected in order to
proceed to subsequent tests. In particular, the first test protects the entire sequence. This
first test is simply the test of the overall omnibus hypothesis, discussed in §6.2.3. above.
Therefore, the multi-step and single-step tests come to the same conclusion regarding the
omnibus hypothesis. Hence, the multi-step test maintains weak control over FWE. Strong
control is also maintained:

Proof of strong control of FWE for multi-step test
Consider a subset U of the intracerebral voxels, U⊆W, with HU true. Let r be the

rank of the maximum statistic for voxels in U, so that Tmax/U = Tk(r), in the notation of
part (1). Clearly HU is rejected by the step-down method if and only if Hk(r) is.

Hk(r) is tested if and only if, in preceding steps (with i < r), all Hk(i) are rejected. At
step r, at which Hk(r) is tested, Wr = {k(r),…,k(K)} is the set of voxels not already rejected,
so U⊆Wr (by construction of the k(i) in part (1), assuming any ties for the voxel with
maximum value in U are broken as they are in part (1)).  Hk(r) is rejected if Tk(r) is in the
top 100α% of the sampling distribution of the maximal statistic, computed over voxels in
Wi. When HU is true, the probability of this is at most α, since the situation is the same
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as in eqn.74, with W replaced by Wi. Thus the probability of falsely rejecting HU, given
that the step-down test reaches voxel k(r), is at most α. Therefore, for any set of voxels
U with HU true, the probability of false rejection is at most α. Thus, the step-down test
controls Type I FWE in the strong sense.

Step-down adjusted p-values
An adjusted p-value image corresponding to the test is computed by enforcing

monotonicity of the p-values computed in part 4, so that once the adjusted p-value
exceeds α no further voxels are declared significant. This adds a further part to the
algorithm:

8) Enforce monotonicity of the p-values to obtain step-down adjusted
p-values:

Psd~
k(1) = P'k(1)

Psd~
k(2) = max{Psd~

k(1), P'k(2)}
   : :

Psd~
k(i) = max{Psd~

k(i-1), P'k(i)}
   : :

Psd~
k(K) = max{Psd~

k(K-1), P'k(K)}

Algorithm (b)

Note that it will only be possible to compute these adjusted p-values for voxels for which
the P'k were computed in algorithm (a). Since computation halts at the first non-
significant voxel hypothesis, these voxels are those whose null hypotheses are rejected,
plus the voxel with largest value whose hypothesis is accepted. The advantage of
forming the full adjusted p-value image would be that the test level α need not be
specified in advance of computations. Voxels declared activated by the step-down test
are precisely those with step-down adjusted p-value less than or equal to α.
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6.2.4.2. Step-down in jumps variant

In this form, the test is too computationally intensive to be useful, involving the
computation of a new randomisation distribution at each step. It is possible to accelerate
the algorithm, by using the single threshold test at each step to identify any activated
voxels and then reject them en masse, rather than considering only the voxel with
maximal statistic at each step. This “jump-down” variant provides a computationally
feasible equivalent test. The algorithm is as follows:

1) As above

2) Set i = 1, R = φ (the empty set), c = αL

3) Compute { ltmax/Wi
 }L

l =1, the L randomisation values

for the maximal value of the statistic image searched over
voxels Wi=W\R = {k(i),…,k(K)}.

4) Compute the critical threshold for this step as (c+1)tmax/Wi
 .

5) If Tk(i) > (c+1)tmax/Wi
 , then Hk(i) can be rejected: Let r be the largest

member of {i,…,K} such that Tk(r) > (c+1)tmax/Wi
 . (So {k(i),…,k(r)} is

the set of remaining voxels whose values exceed the critical threshold
of this step.) Add {k(i),…,k(r)} to set R, set i = r +1, and return to
step (3). If Hk(i) cannot be rejected, or if there are no more voxels to
test, then continue to step (6).

6) Reject voxel hypotheses Hk for voxels k∈R. If voxel hypotheses have
been rejected then the omnibus hypothesis HW is also rejected.

7) The corresponding threshold is (c+1)tmax/R  , for R=W\R. This is the

c+1 th largest member of the last sampling distribution calculated.

Algorithm (c)

Points (3)–(5) constitute a “step”.

Equivalence of step-down and jump-down algorithms
We now prove that the step-down and the jump-down algorithms are equivalent.

(⇒) Step-down rejects Hk ⇒ jump-down rejects Hk (by contradiction).
Suppose Hk is rejected by the step-down algorithm. Let r be the rank of Tk, so that

k = k(r), in the notation of point (1). Since the step-down test rejects Hk(r), Hk(i) must also
be rejected, for i =1,…,r. Let Wi = {k(i),…,k(K)} for i =1,…,r. Then, since the step-down
procedure rejects, P'k(i) ≤ α, equivalent to Tk(i) > (c+1)tmax/Wi

 for all i =1,…,r. Suppose
that the jump-down algorithm does not reject Hk = Hk(r). Then, since the test stops short;
for some voxel k(i) with i ≤ r, Tk(i) ≤ (c+1)tmax/Wi

 , in contradiction to the above. Thus, the
supposition that the jump down test does not reject Hk must be incorrect. Reductio ad
absurdum, the assertion is proved.

(⇐) Jump-down rejects Hk ⇒ step-down rejects Hk (by construction)
Suppose now that Hk is rejected by the jump-down algorithm. Again, let r be the

rank of Tk, so that k = k(r). Since Hk(r) is rejected, so must Hk(i), for i =1,…,r. Therefore,
for each i, at the step at which Hk(i) is rejected, Tk(i) > (c+1)tmax/Wj

 , where
Wj = {k(j),…,k(K)}, j < i, is the set of voxels under consideration at this step. Clearly
Wi⊆Wj, and therefore (c+1)tmax/Wj

 > (c+1)tmax/Wi
 . Hence Tk(i) ≤ (c+1)tmax/Wi

 . But this is
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precisely the condition for the step-down test to reject Hk(i), given that it proceeds to step
i to test it. Since this is true for all i =1,…,r, the step-down test will reject the hypotheses
for voxels {k(1),…,k(r)}. Recall k = k(r).

6.2.4.3. Direct computation of adjusted p-values

A more efficient approach to the step-down test is to accumulate proportions for
the adjusted p-values as each statistic image in the randomisation distribution is
computed. Adapted from Westfall and Young (1993), the algorithm is as follows:

1) As above

2) Initialise counting variables Ci = 0; i =1,…,K.
Set l=1

3) Generate the statistic image lt = (lt1,…,ltK) corresponding to
randomisation l of the labels.

4) Form the successive maxima:
vK = ltk(K)

vK-1 = max( vK, ltk(K-1) ) ( = ltmax/WK-1
)

  : :
v2 = max( v3, ltk(2) ) ( = ltmax/W2

)
v1 = max( v2, ltk(1) ) ( = ltmax/W)

5) If vi ≥ Tk(i), then increment Ci by one, for each i = 1,…,K.

6) Repeat steps (3)–(5) for each remaining possible labelling l = 2,…,L

7) Compute p-values P'k(i) = Ci / L

8) As above (monotonicity enforcement)

Algorithm (d)



194 Chapter Six: A Non-Parametric Approach

6.3. Exemplary Application

The randomisation tests described above were applied to the “V5” study data, for
both the t-statistic image, and the “pseudo” t-statistic image.

There are N = 12 subjects in the “V5” study, giving L = 12C6 = 924 possible
labellings. The whole three-dimensional intracerebral volume was analysed.

6.3.1. Raw t-statistic

Statistic images

The study mean difference image, ∆∆ •, the sample variance image, and the paired

t-statistic image for the “V5” study (for the true labelling) were presented in §2.6.1. The
latter two are repeated here for reference (fig.80).
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Figure 80
(a) Sample variance and (b) paired t-statistic image for “V5” study. These
were previously presented in §2.6.1. The AC-PC plane is shown
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Randomisation distribution for Tmax
For each of the possible labellings l = 1,…,L the t-statistic image lt = (lt1,…,ltK)

was computed (eqn.71), and the maxima, ltmax/W, retained, giving the randomisation
distribution of Tmax/W (fig.81). The largest of these is the observed maximum t-statistic,
Tmax/W, the maxima of the t-statistic image computed with labellings corresponding to
the actual conditions of the experiment. Therefore, a p-value for the omnibus hypothesis
HW is 1/924.
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Figure 81
Histogram of randomisation values for the maximum intracerebral t-statistic
for the “V5” study.
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Single threshold test
For a level α = 0.05 test, the appropriate critical value is the c+1 = αL +1= 47th

largest randomisation value of the maximal statistic, (47)tmax/W = 8.6571 (to 4dp). Values
of the observed t-statistic image greater than this threshold indicate significant evidence
against the corresponding voxel null hypothesis, at the 5% level (fig.82b). The locations
of these 632 voxels in Talairach space can be declared as the activation region. The
single step adjusted p-value image shows the significance of the activation at each
voxel (fig.82a).

−100

−50

0

50
−50

0

50

1

0.8

0.6

0.4

0.2

0

yx a

x

y

−60 −40 −20 0 20 40 60

−100

−80

−60

−40

−20

0

20

40

60

b

Figure 82
(a) Single-step adjusted p-values for the voxel hypotheses Hk, assessed by
randomisation test of the t-statistic image. (b) Voxels with single-step
adjusted p-values below level α = 0.05, whose observed t-statistics exceed
the critical threshold of 8.6571. The AC-PC plane is shown, but computations
were performed over the whole intracerebral volume. The large activated
region at the posterior of the brain corresponds to the primary visual cortex,
visual area V1. The two (insignificant) activations either side of V1 are now
known to be the motion centre, visual area V5, which this study was
designed to locate.

Compare this result with those of the parametric approaches applied to the “V5”
t-statistic image in §3.6. The single-step adjusted p-values for the randomisation test on
the raw t-statistic image are smaller than those of the Bonferroni approach, Worsley’s
expected Euler characteristic method for t-fields, Worsley’s expected Euler characteristic
method for Gaussian fields (applied to the Gaussianised t-statistic image).

Step-down methods
The step-down test, implemented by the jump-down algorithm (algorithm c), gives

a final critical value of 8.6566 (to 4dp) for a level α = 0.05 test. This is reached in the
second step, and is only a slight reduction over the single step critical threshold. An
examination of the re-labellings and maxima shows that the (l)tmax/W for l =2,…47 all lie
outside the region rejected by the single step test, and are therefore not excluded by the
first step of the jump-down algorithm. No further voxel hypotheses were rejected using
this reduced critical threshold. The step-down method gives no improvement over the
single-step method.

Step-down adjusted p-values were computed using the direct algorithm
(algorithm d), and are shown in fig.83a. These were found to differ from the single-step
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adjusted p-values at only a few pixels, where the step-down p-values were 1/924 less
than the single step ones (fig.90).
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Figure 83
(a) Step-down adjusted p-values for the voxel hypotheses Hk, assessed by
randomisation test of the t-statistic image. (b) Voxels with step-down
adjusted p-values below level α = 0.05, whose observed t-statistics exceed
the critical threshold of 8.6566. The AC-PC plane is shown.
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Figure 84
Difference in single-step and step-down adjusted p-values. The AC-PC plane
is shown, with the edge of the intracerebral area superimposed for
orientation. Pixels shaded black had step-down adjusted p-values 1/924 less
than the corresponding single-step adjusted p-value.
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6.3.2. Pseudo t-statistic image

Statistic images
Pseudo t-statistic images were computed with smoothed sample variance

images (eqn.69). The Gaussian kernel used was orthogonal, with FWHM of
10mm×10mm×6mm in the X, Y, and Z directions. The variance-covariance matrix ΣΣ of
the kernel is therefore (appendix B:4):

ΣΣ = 






102 0 0
0 102 0
0 0 62

 
1

8ln(2)

The smoothing was implemented as a moving average filter, with weights
computed by evaluating the kernel on a regular 17×17×7 lattice of points centred at the
origin, separated by 2mm in the X and Y directions, and 4mm in the Z direction, these
distances being the distances between voxel centres. This gives the numerator of eqn.69
for all the voxels. The denominator was computed by smoothing a mask image whose
value was one for intracerebral voxels, and zero elsewhere.

The smoothed sample variance image for the “V5” study is shown in fig.85, and
the pseudo t-statistic (eqn.70) computed with this variance in fig.86.

−100

−50

0

50
−50

0

50

0

0.5

1

1.5

2

2.5

3

3.5

yx

Figure 85
Smoothed sample variance of “V5” study subject difference images (eqn.69).
Compare this with the (raw) sample variance image (fig.80).
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Figure 86
Paired “pseudo” t-statistic image for “V5” study. Compare this with the
paired t-statistic image (fig.80).

Randomisation distribution for Tmax
Once again, pseudo t-statistic images were computed for each possible labelling,

and the maxima, ltmax/W, retained (fig.87). The observed maximum pseudo t-statistic,
Tmax/W, is again the largest of the randomisation values for the maximum intracerebral
pseudo t, giving p-value for the omnibus hypothesis HW of 1/924.
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Figure 87
Histogram of randomisation values for the maximum intracerebral pseudo
t-statistic for the “V5” study.
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Single threshold test
The critical threshold for a single threshold test on the pseudo t-statistic image at

level α = 0.05 is the (47)tmax/W = 5.0830 (to 4dp). This is exceeded by the pseudo
t-values of 2779 voxels (fig.88b). The single step adjusted p-value image shows the
significance of the activation at each voxel (fig.88a).
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Figure 88
(a) Single-step adjusted p-values for the voxel hypotheses Hk, assessed by
randomisation test of the pseudo t-statistic image. (b) Voxels with
single-step adjusted p-values below level α = 0.05, whose observed
t-statistics exceed the critical threshold of 5.0830. The AC-PC plane is shown,
but computations were performed over the whole intracerebral volume.
Compare these figures with the corresponding ones for the “raw”
t-statistic (fig.82). The two V5 activations either side of V1 are now
significant.

Compare this result with those of the parametric methods (3.6.). The single-step
adjusted p-values for the randomisation test on the pseudo t-statistic image are smaller
than those of the Bonferroni approach (applied to the raw t-statistic image), Worsley’s
expected Euler characteristic method for t-fields (applied to the raw t-statistic image),
Worsley’s expected Euler characteristic method for Gaussian fields (applied to the
Gaussianised t-statistic image), and Friston’s “Bonferroni” approach (applied to the
AC-PC plane of the Gaussianised t-statistic image). The activated region identified is also
larger than that from Friston’s suprathreshold cluster size test at
threshold Φ-1(1-0.0001).

Step-down methods
The jump-down algorithm (algorithm c) gives a final critical value of 5.0399

(to 4dp) for a level α = 0.05 test. The first step is the simple threshold test, which picks
out 2779 activated voxels. The algorithm took three further steps, these picking out an
additional 37, 9 and 0 activated voxels. Therefore, thresholding the pseudo t-statistic
image at this level picks out 2825 voxels as activated, a mere 46 more than the
single-step test (fig.89b). The step-down test again provides little improvement.
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Step-down adjusted p-values were computed using the direct algorithm
(algorithm d), and are shown in fig.89a. The reduction in adjusted p-value attained by
using the step-down test over those from the single-step test are shown in fig.90.
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Fig 89
(a) Step-down adjusted p-values for the voxel hypotheses Hk, assessed by
randomisation test of the pseudo t-statistic image. (b) Voxels with step-down
adjusted p-values below level α = 0.05, whose observed t-statistics exceed
the critical threshold of 8.6566. The AC-PC plane is shown.
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Figure
Image showing reduction in adjusted p-values attained by using the
step-down test over those from the single-step test. The AC-PC plane is
shown.
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6.4. Discussion

6.4.1. Permutation tests
So far, we have been considering a randomisation test for a particular activation

study, where the only assumption is that of an initial random assignment of conditions to
subjects. This assumption gives a random element to the experiment, permitting
hypothesis testing. It replaces the assumption of parametric analyses that the scans are
sampled from some population of known form. However, these non-parametric methods
are not limited to experiments where there was an initial randomisation. Permutation
tests are computationally the same as randomisation tests, but the justification for re-
labelling and computing sampling distributions comes from weak distributional
assumptions. For the simple activation study experiment, assume that for each voxel k,
the values of the subject mean difference images, ∆ik, are drawn from a symmetric
distribution centred at µk. Under Hk:µk = 0, the subject mean difference image at k is as
likely as its negative, corresponding to the opposite labelling of the subjects scans. Thus,
under HW, the 2N statistic images corresponding to all possible labellings of the subjects
scans to AB or BA presentation order are equally likely. However, as six subjects were
given the opposite condition presentation order to protect against detecting time effects,
only the NCN/2 permutations of the labels retaining this balance should be considered
(Hochberg and Tamhane, 1987, p267). This gives the same test as the randomisation
approach presented above. Indeed many authors neglect the theoretical distinction
between randomisation tests and permutation tests and refer to both as permutation tests.
The advantage of the randomisation test over the permutation test, is that the random
allocation assumption of the former is clearly true, yielding a valid test.

6.4.2. Other applications
Clearly these non-parametric methods can be applied to many paradigms in

functional neuroimaging. For statistic images where large values indicate evidence
against the null hypothesis, we have developed the theory for a single threshold test, and
a step-down extension. All that is required is the concept of a label for the data, on the
basis of which a statistic image can be computed, and a null hypothesis specified. For
instance, region of interest analyses can easily be accommodated, as can parallel group
designs, comparing a control group with a disease group. Indeed, a randomisation
alternative is available for most experimental designs. See Edgington (1980) for a
thorough exposition. Consider the following examples:

Single Subject Correlation
It is wished to locate the regions of an individual’s brain in which activity increases

linearly with the difficulty of a certain task. During each of M scans the subject is given
the task at a set level of difficulty, the order of presentation having been randomly chosen
from the M! possible allocations. The evidence for linear association of rCBF and
difficulty level at a given voxel may be summarised by the correlation of difficulty level
and rCBF (after some form of global flow correction), or by any suitable statistic. The
“labels” here are the actual task difficulty levels. Under the omnibus null hypothesis
HW:[the individual would have had the same rCBF whatever the task difficulty], the
statistic images corresponding to all M! possible randomisations of the task difficulties
are equally likely, and a randomisation test follows as above.



Discussion 203

Single subject activation experiment
It is wished to locate the region of an individual’s brain that is activated by a given

task over a given baseline condition. The subject is scanned an even number of times,
with each successive pair of scans consisting of one under each condition, giving M
successive rest-activation pairs. The order of the conditions within each pair of scans is
randomly chosen.

A statistic image is formed whose large values indicate evidence of an increase in
rCBF between the baseline and activation condition. A suitable candidate would be a
paired pseudo t-statistic. Under HW:[each scan would have given the same rCBF image
had it been acquired under the other condition], statistic images formed by permuting the
labels within individual pairs of scans, are as likely as the observed one. The labels here
are the scan condition, “baseline” or “activation”, and the possible labellings are those for
which each successive pair of scans are labelled AB or BA. There are M such pairs, so the
randomisation distribution of the statistic image will consist of 2M images.

6.4.3. Other statistics
As we have seen, these non-parametric tests can be applied to any form of voxel

statistic image, unlike parametric analyses where the choice of statistic is limited to those
of known distributional form (for suitable assumptions on the data). This enables the
consideration of the pseudo t-statistic image formed with a smoothed variance estimate,
for which no distributional results are available. The researcher has a free hand to invent
experimental designs and devise statistics. However it is advisable to use standard
experimental designs and statistics if these exist, possibly modifying the statistic to take
advantage of its setting in an image, for example by smoothing. Standard test statistics
are usually those that give the most powerful test in the parametric setting, when the
assumptions are true, and can therefore be expected to retain their sensitivity when the
assumptions are slightly in doubt.

The application of these randomisation and permutation tests is also not limited to
the single threshold and step-down tests discussed above. The procedure gives the
randomisation distribution of the whole statistic image, and hence of any statistic
summarising a statistic image. By computing the exceedence proportion for each statistic
image in the randomisation distribution, a non-parametric version of the omnibus tests
described in §3.4.1. & §3.4.2. could be obtained.

Non-parametric suprathreshold cluster tests
Suprathreshold cluster tests were discussed in §3.5. Recall that the statistic image

is thresholded at a predetermined level, clusters of voxels with suprathreshold values
identified, and the significance of these clusters assessed using some statistic
summarising the statistic image over the cluster, for instance its size:

Randomisation values for the maximum suprathreshold cluster size can be obtained
by computing the maximum suprathreshold cluster size for each of the statistic images in
the randomisation distribution. These randomisation values can then be used as those for
the maximal voxel statistic were in the single-step methods, to obtain the critical cluster
size. A cluster in the observed statistic image larger than the critical cluster size indicates
significant evidence against the (omnibus) null hypothesis for the voxels in that cluster.
Single-step adjusted p-values for the cluster omnibus hypotheses can be computed.
Strong control follows on a cluster by cluster basis. The step-down method can also be
used, where each step tests the omnibus hypothesis over a cluster of voxels identified
from the actual statistic image. If a cluster is found to be significant, then all the voxels in
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the cluster are omitted in the next step. Thus, non-parametric suprathreshold cluster size
tests are possible.

6.4.4. Number of possible labellings, size and power.
A key issue for randomisation and permutation tests is the number of possible

labellings (L), as this dictates the number of observations from which the randomisation
distribution is formed. For the possibility of rejecting a null hypothesis at the 0.05 level
there must be at least 20 possible labellings, in which case the observed labelling must
give the most extreme statistic for significance. Since the observed statistic is always one
of the randomisation values, the smallest p-value that can be obtained from these
methods is 1/L. This is shown in the adjusted p-value images for the pseudo
t-statistic (figs.88 & 89), where the smallest possible p-value of 1/924 is attained for
most of the activated region, even though the observed pseudo t-statistic image has a
clear maximum (fig.86). To demonstrate stronger evidence against the null hypothesis,
via smaller p-values, larger numbers of permutations are required. As the possible
labellings are determined by the design of the experiment, this limits the application of
non-parametric tests to designs with moderate subject and/or scan per subject numbers.
The single subject activation experiment described above has only 2M possible labellings,
64 for a twelve scan session, or 128 for a 14 scan session. Clearly the greater L, the
greater the power, as this implies more data.

As L tends to infinity, the randomisation distribution tends to the sampling
distribution of the test statistic for a parametric analysis, under suitable assumptions
(Hoeffding 1952). Thus, if all the assumptions of a parametric analysis are correct, the
randomisation distribution computed from a large number of re-labellings is close to the
hypothetical sampling distribution of the test statistic, were data randomly sampled from
the appropriate model. For smaller L, non-parametric methods are, in general, not as
powerful as parametric methods when the assumptions of the latter are true. In a sense,
assumptions provide extra information to the parametric tests giving them the edge.
Comparison of parametric and non-parametric analyses of the “V5” data presented here,
would suggest that this discrepancy is not too great. The attraction of the non-parametric
methods is that they give valid tests when assumptions are dubious, when distributional
results are not available, or when only approximate theory is available for a parametric
test.

6.4.5. Approximate tests
In many cases the number of possible labellings is very large, and the computation

involved makes generating all the randomisation values impractical. For instance the
single subject correlation study described above has M! possible labellings, 479 001 600
for a twelve scan experiment. Here, approximate tests can be used (Edgington, 1969b).
Rather than compute all the randomisation values, an approximate randomisation
distribution is computed using randomisation values corresponding to a subset of the
possible labellings. The subset consists of the true labelling, and L'-1 labellings randomly
chosen from the set of possible labellings (usually without replacement). The tests then
proceed as before, using this subset of the randomisation values. A common choice for L'
is 1000, so the randomisation values are those formed with the observed labelling and
999 re-labellings randomly chosen from the set of those possible.

Despite the name, the approximate tests are still (almost) exact. Only the
randomisation distribution is approximate. The randomisation values used can be thought
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of as a random sample of size L' taken from the full set of randomisation values, one of
which corresponds to the observed labelling. Under the null hypothesis, all members of
the subset of randomisation values are equally likely, so the theory develops as before.
As the critical threshold is estimated, it has some variability about the true value that
would be obtained from the full sampling distribution. There is a loss of power because
of this, but the loss is very small for approximate sampling distributions of size 1000. See
Edgington (1969a & 1969b) for a full discussion.

6.4.6. Step-down tests

Step-down tests ineffectual
The possibility of a large activation causing these tests to be conservative has been

discussed, and the step-down tests proposed to counter the problem. From the results
presented here, the step-down methods appear not to merit the computation they
involve. Examination of the randomisation t-statistic images that yield the largest
maximum values, shows that many correspond to labellings that are almost the opposite
of the true labelling of the experiment. For this data set it appears that the negatively
activated background (giving large statistics for labellings almost the opposite of the true
labelling) influences the extreme of the randomisation distribution more than the
positively activated region does in labellings close to the true labelling. These negative
activations are not “cut out” by a step-down procedure.

Two-sided step-down tests
One solution to this problem would be to consider a two-sided step-down test.

However, if only a one-sided test is required, the two-sided approach may not present an
improvement over the one-sided step-down method, since the test level is effectively
halved. This appears to be the case for the “V5” data. A two-sided single-step
randomisation test at level α = 0.05, using the pseudo t-statistic, gives a critical threshold
of 5.3502 (4dp), which 6560 voxels exceed in absolute value. Omitting these voxels from
the search set, the second step of the jump-down algorithm finds no evidence against
additional voxel hypotheses, and gives a final step-down threshold of 5.3501 (4dp).
Recall that the one-sided step-down randomisation test, using the pseudo t-statistic, gave
critical value 5.0399 (4dp) for level α = 0.05. A two-sided test using the “raw” t-statistic
image behaves similarly.

In conclusion, it appears that the step-down methods are not worth the
computational effort involved.

Artefactual deactivations
There remains the issue of whether a deactivation is real, or an artefact of global

normalisation. This was discussed previously in §2.4., where it was concluded that for
the “V5” study, gCBF was not condition dependent, and that the depressed background
of the “V5” statistic images represents a true inhibition of rCBF induced by the large
increase in the visual cortex.

If decreases are artefactual, then it may be worth investigating measures of gCBF

more sophisticated than the mean voxel value, measures which effectively measure the
background gCBF. Another possibility would be to use the jump-down method and
re-normalise the data after every step, omitting the “activated” regions from the
computation of gCBF (gA). This latter approach requires further investigation, since it is
not clear whether strong control over FWE is maintained.
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6.4.7. Computational burden
The main drawback of the non-parametric tests presented here are the vast

amounts of computation involved. The current work was undertaken in MATLAB (The
MathWorks Inc., Natick), a matrix manipulation package with extensive high level
programming features. The test was implemented as a suite of functions. The platform
used was a SUN Microsystems SPARC2 workstation, with 48MB of RAM and 160MB of
virtual memory. Computing times for the “V5” data are presented in the table below.
More efficient coding in a lower level compiled language, such as C, should greatly
reduce the running times. Even so, considering the vast amounts of time and money
spent on a typical functional mapping experiment, a day of computer time seems a small
price to pay for an analysis whose validity is guaranteed.

Computing times

“raw” t-statistic pseudo t-statistic
Single-step

(randomisation values only)
8 hours 14 hours

Jump-down
(algorithm c)

16 hours
(two steps @ 8 hours)

56 hours
(four steps @ 14 hours)

Step-down p-value
(algorithm d)

18 hours 24 hours

Table 91
Computing times for the randomisation tests on the “V5”. All times include
time spent computing the randomisation  t-statistic images from the 12
subject difference images. Each subject difference image consists of
K = 77189 intracerebral voxel values, held in double precision. The
computational “tricks” of considering only half the labellings, and of storing
the sum of squares of the subject difference images, were utilised in the
code (recall §6.2.2.). Computations were undertaken in MATLAB on a SUN

Microsystems SPARC2 workstation.
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6.5. Conclusions

In this chapter a new method has been presented for the analysis of functional
mapping experiments. Established non-parametric techniques have been extended to this
special multiple comparisons problem, to produce a test with localising power, that is
(almost) exact, relatively simple, and which has numerous advantages over existing
parametric methods.

These non-parametric tests are valid and (almost) exact given minimal assumptions
on the mechanisms creating the data, in contrast to existing parametric analyses, which
rely on approximations and strong assumptions. The randomisation test assumes only an
initial random allocation in the design of the experiment, an assumption that can clearly
be verified. Permutation tests assume vague properties about the distribution of the data,
such as symmetry about some location. Because the assumptions are true, and no
approximations are made, there is no need to assess specificity using simulated data or
rest-rest comparisons. That the tests force practitioners to think carefully about
randomisation and experimental design is no bad thing.

The tests are also very flexible. They can be applied to any paradigm where there is
a concept of a label for the data, from which a statistic can be formed, and a null
hypothesis specified. As the distribution of the statistic image is not required to be
known, images of non-standard test statistics can be analysed, for example the pseudo
t-statistic computed with smoothed variance considered here. Further, any sensible
statistic summarising a statistic image may be used to assess evidence of a signal. For
example, the maximum voxel value or maximum suprathreshold cluster size may be
taken as statistics for summarising statistic images, leading to exact non-parametric
single threshold and suprathreshold cluster size tests respectively.

The disadvantages of the method are the computation involved, and the need for
experiments with enough replications or subjects to give a workable number of possible
labellings.

The power of these methods remains to be examined thoroughly. In general, non-
parametric methods are outperformed by parametric methods when the assumptions of
the latter are true. For fairly large experiments (with many possible labellings) the
discrepancy may not be great, particularly if the parametric methods are conservative.
Present experience suggests that the non-parametric methods and the current parametric
methods give similar results for studies where the assumptions of the latter are
reasonable. This could be examined (at great computational expense) by simulation.
However, there are many situations where the assumptions of current parametric
methods are in doubt. In these situations the non-parametric methods provide the only
valid method of analysis. In addition, the ability to analyse non-standard statistic images,
such as the pseudo t-statistic considered here, appears to afford the non-parametric tests
additional power over the parametric methods, which are constrained to statistics for
which distributional results are available. Experience of applying both methods to a wide
range of data sets would be valuable.
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