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Chapter Six

A Non-Parametric Approach

In this chapter, a non-parametric approachassessing functional mapping
experiments is presented. A multiple comparisons randomigatstrisdeveloped for
simple activation studiesyhich is shown tomaintain strong control overfamilywise
Type | error. A step-down procedure witsirong control is introduced, and
computationally feasible algorithms presented. The mettweddlustrated on a reakT
data setwith a pseudd-statisticimage formed with amoothed variance estimate. For
thegivendata set the approach is found to outperforamy ofthe parametric methods,
particularly withthe pseuda-statistic. Thisfogetherwith theflexibility and guaranteed
validity of a non-parametric method, mak#dse approackery attractive, despite the
computational burden imposed. The practicalitiethefmethod are discusséutluding
extensions to other experimental paradigms, other test statistics, and permutation tests.

A paper, withsimilar content tothis chapter, has been acceptedpiablication in
theJournal of Cerebral Blood Flow and Metaboligiiolmesetal., 1995).
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6.1. Introduction and Motivation

Current methods forassessinghe significance of statistic images are either
parametric, orrely on simulation. Currentlyavailable approaches were discussed
extensively in chapter 3, where they were found to be lacking in some areas.

Shortcomings of parametric methods

Parametric approaches are based on the assumpspaaific forms of probability
distribution for thevoxel values irthe statistitmages. Hypothesesespecified in terms
of the parameters of the assumed distributidssually, scandata are taken to be
normally distributed, giving known distributional forms for certain statistics. These
statisticimagesare then assessading (approximate) resulfer continuous random
fields, under the assumptiohdt the statistiomage is a good latticeepresentation of a
continuous randonfield with matching marginal distributioand variance-covariance
matrix of partial derivatives. Thisse of continuous randoields was seen to be
particularly inappropriate for andF statistics whose denominator has low degrees of
freedom (8.3.6.5.). Thus, parametric methods restrict the form of/¢ixel statistic to
those for which distributional results areavailable, andrely on a multitude of
assumptions and approximations, tradidity of which isoften in doubt, buseldom
checked.

Simulation approaches require thg&mulation of null statistic images whose
properties match those tfue null statistic images, a matathich isoften dubious as
discussed in35.1.

Non-parametric methods

Having encountered problems wittlassical parametrimethods wheranalysing
EEG dataBlair etal. (1994)applied non-parametric method3riginally expounded by
Fisher(1935), Pitman(1937a, 1937b), and later Edgington (1964, 1969a, 1980), these
methods arereceiving renewed interest as modern compufogver makes the
computationsinvolved feasibleSee Edgington (1969a) for a thorough asadable
exposition of randomisation tests.

Parametric methods make formal assumptiabsut theunderlying probability
model, up to théevel of aset of unknown parameteScientific hypotheses formulated
in terms of these parameters are then tested dmaig ofthe assumptions. In contrast,
non-parametric method®st simplehypotheses about thmechanismgenerating the
data, using minimal assumptions.

Non-parametric approach for functional mapping experiments

In theremainder of this chapténe theory for randomisation and permutat&sts
for functionalmapping experiments is develop&adr simplicity, we shalconcentrate on
the simple multiplesubject activation experiment, with statistitage to be assessed
using a single threshold. As vehall see, the approach is by neeans limited to this
scenario.
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6.2. Theory

The rationalebehind randomisatiotests and permutation testsimguitive and
easilyunderstood. In a simple activatierperiment, the scans dabelled as “baseline”
or “active” according to the condition undehich the scan was acquired, and a statistic
image is formed on theasis oftheselabels. Ifthere isreally noactivation effect then the
labelling ofthe scans as “baseline” and “active” artficial, andany labelling of the
scans would lead to aqually plausiblestatistic image. Undeahe null hypothesishat
the labelling isarbitrary, the observed statisiimage is randomly chosen fratime set of
those formed with all possible labellings. If each possible statistic image is summarised by
a single statistic, then thgrobability of observing a statistinore extreme than given
value, is simply theroportion of thepossible statistitmages with summary statistic
exceeding that value. Hengeyalues can be computed atedts derived. Ithis section
we formalise this heuristiargument, concentrating on randomisatiests, where the
probabilistic justificationfor the method comes from thretial random assignment of
conditions to scan times.

Experiment

Consider thdollowing simple multi-subjecactivation experiment withl subjects,
each scanned repeatedly unites conditions denoted by ands, with M repetitions of
each condition. The conditions are presented alternately toiredicidual. Half the
subjects argandomly chosen to receive conditianfirst, thens, followed by M-1)
further AB pairs @B order,conditions presentesBAB...). The othemalf of the subjects
receive conditiom first (BA order,conditions presenteBiBA...). The randomisation of
subjects to condition presentati@rder in this way preventsinear time effects
confounding any condition effect in the statistic image.

6.2.1. Statistic images

We shallconsider a proportionakalingapproach to theormalisation for changes

in gCBF (gA), constructing pairettstatisticimages as described i2.8.1.,generalising

to “pseudo” t-statistics calculated using smoothed variance imagesadipt this
approach because of issmplicity, robustness, and because it illustrates some of the
problems with statistionages withlow degrees of freedom. Note tlaaty method for
producing (statistic) images, whose extreme values indicate activation, naadbdn
particular, more generahodelling of the effect ofglobal changes via MCOVA is
possible, at an increased computational burden.

Notation

Recallour notation:Y'jqx denotes theasr (rA) measurement at voxkkF1,... K,
of scanj=1,...M, under conditionq= 0,1 (0O="rest”), onsubjecti =1,...N; after
normalisation by proportional scaling as describe®ih.8. Let W be the set @hdices)
of thevoxels coveringhe region of interest, W={1,.K}. Let xy be the centre of voxel
k.
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Paired t-statistic image
The paired-statisticimagefor the study is computed as described2r88.1. To
recap, the statistic at voxelT,, is given by:

A
Tk:r (21)
2
S2IN
where Ay = Y- Yook (20)
_ 1 N
A=y 2 ik (22)
i=1
LN
) _
and  SE=y7 D M- A.kﬁz (23)
i=1

Variance “smoothing”

AssumingA;, ~ N(iy,08); then under gpy= 0, T~t,.1, a Student’s distribution
with N-1 degrees of freedom. Sinttee number of subjectsy, is typically between six
and twelve, the degrees of freedom are low, and-#tatisticimage exhibits igh
degree of (spatial) noise. As discussed3r8%.5., and aseen for the “V5” studgata
(82.6.1.) this noise is inherited from the sample variance image.

However, physicaland physiological consideratiowsuld suggest that the true
errorvariance image ismooth,being approximatelgonstant ovesmall localities. This
suggests the use of lacally pooled variance estimate, formed by poolveyiance
estimates acrosseighbouring voxels, possibly weightitige contribution ofoxels to
reflect their displacement frothe voxel wherethe estimate is soughfhis effectively
smoothes the@ariance image, givingmooth statistitmages with no loss aksolution.
The noise has been smoothmd not thesignal. This idea isot new, buthasnot been
pursueduntil now because the distribution of théseally pooled variance estimates is
unknown, precluding any analysis in a parametric manner.

Consider a weightedocally pooled estimate of theample variance at voxg]
SJ, obtained by convolving a Gaussian kernel of disperEionith the voxel level
sample variance imageqn.69):

> Fxi =% )Se
S§ = W (69)

k%vf(Xk -Xy)

Here f§&) = exp(xT=1x/2) /+/(2mP |2| is the Gaussian kern&ince summation igver
the intracerebral voxels, tHdter kernel istruncated at the edge of the intracerebral
volume.
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“Pseudo” t-statistic image
Using thissmoothedsample variance ithe formula for thet-statistic (egn.21),
gives us a pseudsstatistic image (egn.70):

Ay

Ty=—F— 70
k lissle (70)

We shalluse thesame notationT{) for both the pseudbstatistics and the “raw” ones,
since the theory to be presented is applicable in either case.

6.2.2. Null hypothesis and labellings

If the two conditions of theexperiment affecthe brain equally,then, for any
particular scan, the acquired image would have been the same had the scan been acquirec
under the other conditioihis leads to voxel hypothesies no activation at each voxel
as:

o, - Each subject would haggven the same set afBF (rA)
k* measurements at voXglwere the conditions fahatsubject reversed

The hypotheses relate to ttata,which are regarded as &x.Under the omibus
hypothesis K, any ofthe possible allocations of conditions to scan times wbalk
given usthe same scans. Onthe labels ofthe scans as ands would be different, and
under H,, the labels of the scansa®r B are arbitrary. Theossible labellingare those
that could lave ariserout oftheinitial randomisation. In this caslee possiblelabellings
are those withhalf the subjects scatabelled inAB order and half BA order, giving
L =nChiz = NY/((N/2)1)2 possibilities.Thus, under &, if we re-randomise thiabels on
the scans to correspond to another possible labelling, the statejecomputed on the
basis ofthesedlabels igust aslikely asthe statistitmagecomputedusingthe labelling of
the experiment, because tingial randomisation couleéqually well haveallocatedthis
alternative labelling.

Re-labelled t-statistic images

For theexperimental situation under consideratitig possible labellingare of
ABAB... Or BABA... for each subjects scans. Thst each subjects scaae labelled
either thesame as irthe actual experiment, completelythe opposite. Thugach
possible labellingan be specified lgpecifyingfor each subject whether thabelling is
identical oropposite to the actudabelling of the experiment.et |6 = (04,...,,0n),
[ =1,...L, be a set oN-vectors withelementsd; = +1 if underlabelling| subjecti is
labelled identically to the actual experiment, @ —1 if the labelling is the opposite.
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Lett, be the value at vox&lof thet-statistic image computed fabellingl of the
scans, foft = 1,...L. Thent, can be easily computed as:

L (71)
Ik = >
\/ISCIN
N
— 1
where |A ok = N z |6i Aik
i=1
with Ay = Vi-lk - Vi-Ok as before (20)
N
2_ 1 —
and SE= N7 2 O ik - |A.kEZ
i=1
1 N > N HIA-kB2
N-1 Z D -—NT1 (72)

Thus, provided thesum ofthe squares of the subjelifferences is retained, the
t-statistic for eacHabelling only requires the computation of the new studgan

difference image, with voxel valuga ,,, and a few computations to derithe sample

variance and-statistic imageFor “pseudo’t-statistic imageghe sample variancenage
must be smoothed before computation ofttketistic image.

A further computational “trick” arises from the observation that for &dm#ling
of the scans, the opposigbelling isalso possible, anthe t-statisticimagesfor these
two oppositelabellingsare negatives of one another. Henestatisticimages neednly
be computed for half of the possible labellings.

Usually, labellingl =1 is taken to be th&belling corresponding to the actual

conditions of the experiment, s@ = +1. In this cased_A.k:K.k, 1Sk2:Sk2, and
1t = Tk

Randomisation distributions

For a single thresholtest, rejection or acceptance of tlennibus hypothesis is
determined by thenaximumvalue inthe statistigmage. The consideration oinaaximal
statistic deals witlthe muliple comparisons problenhet T4, denote themaximum
of the observed statistitcnage T searched ovevoxels (with indices) irnthe set W,
Trmaxiv = Mmax{Ty : KOW}. It is the distribution ofthis maximal statistic that is of
interest.

Under H,, the statistiamagescorresponding tall possible labellingsire equally
likely, sothe maximal stéistics of thesemagesare alseequally likely.Let |t,ax4y D€ the
maximum value (searchedver the intracerebravoxels W) of the statisticimage
computed forlabelling I; | =1,...L. This set of statistics, each corresponding to a
possible randomisation dfie labels, we calthe randomisatiowaluesfor themaximal
statistic. When I is true, Tpaxw IS a@s likely as any ofthe randomisationalues,
because the correspondilaipellingswere equally likely to have beeallocated in the
initial selection of labelfor the experimentThis givesthe randomisation distribution of
the maximalstatistic,giventhe data and th@ssumption that themnibus hypothesis A
is true, as PMmaxwv = Itmaxiv | Hw) = 1L (assuming that thé, a4y are distinct).
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6.2.3. Single threshold test

From the above, thprobability (under Hy) of observing a statisticnage with
maximumintracerebral valu@as, or more extreme than, the obsemade Ty ,ay4y, IS
simply the proportion ofandomisation valuegreater than oequal to Ty a4 ThiS
gives gp-value for a one sided test of the omnibus null hypothesis.

This p-value will be less thar0.05 if Tyaxw IS In the largest 5% of the
randomisation values, which it is if andly if it is greater than the 95percentile of the
randomisation values. Thus fortest with weak control overrwe at level 0.05, a
suitable critical value is this 85percentile. Therobability of rejecting arue omiibus
null hypothesis ighe probability that any voxels irthe observed statistimage have
values exceedintie critical threshold. Iany voxel valuesxceed the threshold then the
maximalone does, and th@obability of this is atmost 0.05when the omnibusnull
hypothesis is true.

In general, for devel a test,let c =[aL, aL rounded down. The appropriate
critical value is thethe c+1 th largest of thetmaxw, which wedenote bycs1)tmaxiv.
The observed statisticnage isthresholded, declaring as activatidse voxels with
value strictlygreater tharthis critical value. Therare c randomisation values strictly
greater thafeqytmaxiv (Iess ifc1ytmaxiv = (¢)tmaxiv), SO theprobability of type lerror
is:

Pr(TmaxM/ > (C_,_l)tmax;w | H\N) <c/L=laLOL <a (73)

This becomes an equalitytifere are no ties in treamplingdistribution, and oL is an
integer. Tiesoccur with probability zero for themaxima of statistic images from
continuous data. Theize ofthe test is lesthan 1L smallerthana, depending on the
rounding ofaL. Weak control over Typedrror ismaintained. Thughe test igalmost)
exact, withsize (almost) equal tthe given levela. Further, thigesthasstrong control
overFwE

Proof of strong control for single threshold test

To prove strong control the tesas to be shown to balid for an arbitrary subset
of the intracerebral voxels.

Consider a subset U of the intracerebral voxelsy\J A randomisatiortest for
the omnibus nullhypothesis I for this region wouldproceed as above, busing the
randomisation distribution of theaximalstatistic searched over thiexels in U.Denote
this maximal statistic by Tmaxu = max{Ty : kOU}, and the randomisation values by
itmaxu. Then, in notation corresponding to that abovectiteal value isc+1)tmaxu,
thec+1 th largest member of tlsampling distribution ofhe maximalstatistic searched
over voxels in the set U.

Clearly tmaxu < 1tmaxw | = 1.-.,L; since UIW. This inequality also remairteue
once thetwo randomisation distributions arerdered (appendix F). In particular
(c+Dtmaxu S (c+1)tmaxav - Thatis, the appropriate threshold for thest applied to
volume U is atmost thecritical valuefor the thresholdest for thewhole intracerebral
volume W. Therefore:

Pr(Tmaxu > (c+1)tmaxNv |H) < Pr(Tmaxu > (c+1)tmax,U | Hy) (74)
=c/L = [aLO/L
<a

In words: Considering voxels ithe set U, the threshold computed dtir the
intracerebral voxels igreater thar(or equalto) thatappropriate for testing [Halone,
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resulting in a validbut pcsibly conservativejest for this subset othe intracerebral
voxels. Thus, atest thresholding the observed statisitbage T at critical value
(c+Dtmaxiv derived as above, has strong control over type | error.

Strong control with smoothed variance

The above proofelies onsubset pivotality othe . Thatis, that thet-statistic
imagesfor all possible labellingsareidenticalunder the restrictions Hand H,, for all
voxels in U. This isassured under (Hat voxelkJU only for statistics computeldcally
at thatvoxel. If a smoothed variance estimate is used, then this condition is not
maintained, the above proof breaks down, and strong control cannot be claimed.

However, sincethe effect ofvariance smoothing is local, may be intuitively
claimed that strong control isnaintained in @road sense. Consider a subset U of W,
and let U' consist of theoxels in U andhosevoxels surrounding U whossample
variances contribute tthe smoothedariance at voxels in U. Thegiven H, , the test
of H, is valid.

An alternative solution to this predicament is to redetireavoxel hypotheses in
terms of the computed statistic image, as follows:

o, - The computed statistic at voxelould have been the same,
k- were the conditions for any of the subjects reversed

Two-sided test

For a twosidedtest to detechctivation and deactivation, the statigtitage is
thresholded in absolute value. The randomisation distribution fanaixenal absolute
intracerebral value ithe statisti¢mage iscomputedexactly as above, witmaximum
value replaced bymaximum absolute valueFor every possiblelabelling the exact
oppositelabelling isalso possiblegiving statisticimages thaare the negatives ehch
other, and hence with theame maximum absolute intracerebral value. Thus the
randomisation valuesre tied in pairsffectively halvingthe number of possible
labellings.

Single-step adjusted p-value image

A p-value for the observeshaximal statistic has already been derivEdr other
voxels, p-values can besimilarly computed. Thep-value is theproportion of the
randomisation valuefor themaximal statisticwhich are greater than @qual to the
voxels value. Thesp-values are known asingle step adjusted p-valug¢g/estfall &

Young, 1993, 8§2.3.3), giving single step adjugtedliue imag@gsfor these data:

_ proportion of randomisation distribution mximal

P = statistic greater than equal toTy (75)

Proof of validity of single-step adjusted p-values

A voxel with associateg-value Pgisa, must have valueT() exceeded or
equalled by at mostL randomisation value®r themaximalstatistic, by thedefinition
of the adjustedp-values. There are+1l members othe sampling distribution of the
maximal statistic greater oequal to thecritical thresholdcyytmaxiv, and sincec+1 =
[aLO+1 >al, T must exceegty pytmaxiv.

Similarly, if a voxelhas valuely exceedinghe critical thresholdc.1)tmaxtv, then
Tk must be exceeded or equalled by at ntosindomisation value®r themaximal
statistic, so the single step adjugpechlue at this voxel must be at mast

Hence, thresholding the singléep adjustegh-value image atr is equivalent to
thresholding the observed statistic imagg.attmaxiv, for ¢ = L[]
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6.2.4. Multi-Step tests

So far, we have been considering a single thredleslg asingle-step method in
the language of multiple comparisons (Hochberg & Tamhane, 1987). The critical value is
obtained from the randomisation distribution of thaximal statistic over thewvhole
intracerebral volume, either directly, wia adjustedp-value images. It is somewhat
disconcerting that all voxel values are compared with the distribution of the maximal one.
Shouldn’t only the observed maximal statistic be compared with this distribution?

Secondary activation conservativeness

An additional cause for concern is the observation that an activatiaothimtates
the statisticimage, affectdhe randomisation distribution of theaximal statistic. A
strong activationill influencethe statistiemagesfor re-labellings, particularlyhose for
which the labelling is close tothat of theexperiment. The activatiomay possibly
dominate thee-labelled statistiomagesfor somere-labellings, leading to higher values
in the randomisation distribution than were there no activation. Thiyrayactivation
could increase theritical value ofthe testThis does notaffect thevalidity of the test,
but makes it more conservative for voxelther than thawith maximum observed
statistic, as indicated by eqn.74. In particular, tdst would beless powerfulfor a
secondary activation in the presence of a largeary activationthan for the secondary
activation alone. Shouldn’'t regions identified astivated be disregarded, and the
sampling distribution for the maximal statistic over the remaining region used?

We now consider step-dowasts,extensions of the singiep procedureg.hese
are designed to address the issues raised above, and are likely to be more powerful.

6.2.4.1. Step-down test

The step-dowrtestdescribed here is sequentially rejectivéest (Holm, 1979),
adapted to the currenapplication of randomisation testing. Starting with the
intracerebral voxels, thp-value for themaximal statistic is computed as described
above. If thisp-value isgreater tharm the omnibus hypothesis mccepted. If notthen
the voxel with maximumstatistic is declared as activated, andtése is repeated on the
remaining voxels, possibly rejectitige null hypotheses for theoxel withmaximal value
over this reducedset ofvoxels. This isrepeateduntil a step rejects no further voxel
hypothesis, whethe sequence of tests stops. Thus, activaigdlsare identified, cut
out, and theemainder othe volume of interest analysethe process iteratingntil no
more activated voxels are found.
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The algorithm is as follows:

1) Letk®,... k" be the indices of the intracerebral voxels, ordered slich
that the corresponding voxel values in the obserggatistic image g
from largest to smallest. That B, = Tynax, the maximum
intracerebral statistic value, afigk) the minimum. (Voxels with tied
values may be ordered arbitrarily.)

2) Seti =1, R =@ (the empty setl; = [&L]

O

3) Compute {tmaxs: }:-:1, theL randomisation values
for the maximal value of the statistic image searched over
voxels W=W\R = {k0),... k(}.

4)  Computep-valueP',, as the proportion of the randomisation
distribution just computed greater than or equd o

5) If P is less than or equal ég then H can be rejected: Add) to
set R, increaseby one, and return to step (3). Ifdcannot be
rejected, or if there are no more voxels to test, then continue to step

(6).
6) Reject voxel hypotheses lfor voxelskR. If voxel hypotheses have
been rejected then the omnibus hypothegjssHlso rejected.
7)  The corresponding thresholqdsyytmax/z , for R=WAR. This is the
c+1 th largest member of the last sampling distribution calculated

Algorithm (a)

Points (3)—(5) constitute a “step”. Thest proceeds oneoxel per step, from the
voxel with largest value ithe observed statistimage,towards thatwith the smallest
value. Theset ofvoxels with rejected hypotheses, R, is addeoni@voxel per step until
a non-significant voxel hypothesis is found, whieealgorithmstops. H is tested in
stepi, at which point Wis the set of voxels not already rejected.

This defines grotectedsequence of tests. Eatdst “protects” thoséollowing it
in that theomnibus nullhypothesis fothe remainingregion must be rejected arder to
proceed to subsequent tests. In particularfitsietest protects the entisquenceThis
first test is simply the test of theverall omnibus hypothesis, discussed@r28. above.
Therefore, the multi-step and single-step tests come to the same conclusion regarding the
omnibus hypothesisience, thenulti-step tesmaintainswveak control oveFwEe. Strong
control is also maintained:

Proof of strong control offwe for multi-step test

Consider a subset U of the intracerebral voxels$\WJwith H true. Letr be the
rank of themaximumstatistic for voxels in U, sthat Ty,ax = Tko, In the notation of
part(1). Clearly H; is rejected by the step-down method if and onlyf is.

Hyo is tested if ananly if, in preceding steps (with<r), all H s are rejected. At
stepr, at which Hy is tested, W= {k,... k} is the set ofvoxelsnotalready rejected,
so UJW, (by construction of th&® in part (1), assumingny ties for thevoxel with
maximumvalue in Uare broken as they arepart (1)). Ho is rejected ifTy ¢ is in the
top 10@% of the sampling distribution of the maximal statistic, computedvoxais in
W;. When H; is true, theprobability of this is atmosta, sincethe situation is theame
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as in eqn.74, with W replaced by, \Whus theprobability of falselyrejecting H,, given
that the step-down testaches voxet("), is at mosti. Therefore, formny set ofvoxels
U with Hy true, theprobability of falserejection is at most. Thus, the step-down test
controls Type FWE in the strong sense.

Step-down adjusted p-values

An adjustedp-value imagecorresponding to théest is computed by enforcing
monotonicity of thep-values computed ipart 4, so that once the adjustpdialue
exceedso no further voxelsare declaredignificant. Thisadds a further part to the
algorithm:

8) Enforce monotonicity of thevalues to obtain step-down adjusted
p-values:
F;édk(l) = P'k(l)
F;édk(z) = max{PEdk(l), P'k(z)}
F;édk(i) = max{PEdk(i.n, P'k(i)}
F;édk(K) = max{PEdk(K.1>, Plk(K)}

Algorithm (b)

Note that it will only be possible to compute these adjystedues for voxels fowhich
the P, were computed iralgorithm (a). Since computation halts the first non-
significant voxel hypothesishese voxelare those whoseull hypotheses are rejected,
plus the voxel with largest value whose hypothesisatxepted. The advantage of
forming the full adjustedp-value imagewould be that thdestlevel a need not be
specified in advance aomputations. Voxels declared activated by the step-desin
are precisely those with step-down adjugte@lue less than or equaldo
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6.2.4.2. Step-down in jumps variant

In this form,the test igoo0 computationally intensive to be useful, involving the
computation of a new randomisation distribution at e&ef. It ispossible to accelerate
the algorithm, byusingthe sigle thresholdtest at each step tdentify anyactivated
voxels and then reject theen masserather thanconsidering onlythe voxel with
maximal statistic at eactstep. This “jump-down” variant provides @&omputationally
feasible equivalent test. The algorithm is as follows:

1) Asabove
2) Seti =1, R =@ (the empty set); = &L

3) Compute {tmaxm: }:-:1, theL randomisation values
for the maximal value of the statistic image searched over
voxels W=W\R = {k0),... k(}.

4)  Compute the critical threshold for this step.ag)tmaxi; -

5) I Ty > (c+1)tmaxm; - then Ho can be rejected: Letbe the largest
member of {,... K} such thatTy, > ¢+ 1)tmaxmw, - (SO &9,... KD} is
the set of remaining voxels whose values exceed the critical threshold
of this step.) Add k®,... kM} to set R, set =r +1, and return to
step (3). If Hw cannot be rejected, or if there are no more voxels to
test, then continue to step (6).

6) Reject voxel hypotheses lfor voxelskR. If voxel hypotheses have
been rejected then the omnibus hypothegjssHlso rejected.

7)  The corresponding thresholqdsytmax/w , for R=W\R. This is the
c+1 th largest member of the last sampling distribution calculated

Algorithm (c)

Points (3)—(5) constitute a “step”.

Equivalence of step-down and jump-down algorithms
We now prove that the step-down and the jump-down algorithms are equivalent.

(O) Step-down rejects HI jump-down rejects gl(by contradiction).

Suppose His rejected by the step-down algoritiret r be the rank oT, so that
k =k, in the notation of pointl). Sincethe step-down tesejects Ho, Ho must also
be rejected, for=1,...r. Let W = {k0),... k®} for i =1,...r. Then, since¢he step-down
procedure reject®'yn < a, equivalent toTyg > (c+1)tmaxay; for all i =1,...r. Suppose
that thejump-down algorithndoes noteject H, = H». Then, sincghe test stops short;
for some voxek® with i <1, Ty < (c+1)tmaxsy, » I contradiction to the above. Thus, the
supposition that the jump dowast does noteject H, must be incorrecReductio ad
absurdumthe assertion is proved.

(O) Jump-down rejects H1 step-down rejects Hby construction)

Suppose now thatHs rejected by th@imp-down algorithmAgain, letr be the
rank of Ty, so thatk = k{"). Since H is rejected, so must/h fori =1,...f. Therefore,
for eachi, at the step atwhich Hg is rejected, Ty > c+1)tmaxw, » Where
Wi = {k0),... K9, j <i, is the set ofvoxels under consideration at thitep. Clearly
W;OW;, and thereforge,qytmaxm, > (c+1)tmaxm; - HENCET o < (c+1)tmaxiy; - Butthis is
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precisely the condition for the step-down test to rejget given that it proceeds to step
i to test it. Since this is true for ak1l,...r, the step-down test will reject the hypotheses
for voxels 9, ... k®}. Recallk = ki),

6.2.4.3. Direct computation of adjusted p-values

A more efficient approach to the step-down test isacumulate proportions for
the adjustedp-values as each statistimage inthe randomisation distribution is
computed. Adapted from Westfall and Young (1993), the algorithm is as follows:

1) Asabove

2) Initialise counting variableSi = 0;i =1,... K.
Setl=1

3) Generate the statistic image (ty,...,tx) corresponding to
randomisation of the labels.

4)  Form the successive maxima:
Vi =1l
Vi = Max(Vy, ttws ) (= Itmaxtvc)

Vv, =max(V,, te ) (= 1tmaxiv,)

v, =max(V,, tyw) (= 1tmaxi)
5) Ifvi 2 Te, then incremer; by one, for each=1,...K.
6) Repeat steps (3)—(5) for each remaining possible labe#ir... L
7)  Computep-valuesP' s =Cj /L

8) As above (monotonicity enforcement)

Algorithm (d)
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6.3. Exemplary Application

The randomisatiotestsdescribed above wespplied tothe “V5” studydata, for
both thet-statistic image, and the “pseudestatistic image.

There areN =12 subjects in the “V5” studygiving L =1,Cs = 924 possible
labellings. The whole three-dimensional intracerebral volume was analysed.

6.3.1. Rawt-statistic

Statistic images
The studymean difference image\ ., thesample variance imagand the paired

t-statisticimagefor the “V5” study (for therue labelling) were presented in 82.6.1. The
latter two are repeated here for reference (fig.80).
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Figure 80
(a) Sample variancand (b) pairedt-statistic image for “V5” study. These
were previously presented in §2.6.1. Blaerc plane is shown
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Randomisation distribution for T4

For each of thepossible labelling$ = 1,...L the t-statisticimage |t = (ty,...,tk)
was computed (egqn.71), and thexima, |tyaxw, retained,giving the randomisation
distribution of T, 44y (fig.81). The largest of thesetlse observedhaximumt-statistic,
Tmaxiys the maxima ofthe t-statisticimage computed withlabellingscorresponding to
the actual conditions of the experiment. Therefopeyalue for theomnibus hypothesis
Hy, is 1/924.
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Figure 81
Histogram of randomisation values tbe maximum intracerebradstatistic
for the “V5” study.
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Single threshold test

For alevela = 0.05 test, the appropriatetical value ishec+1 =[aL+1= 47#h
largest randomisation value of the maximal statigfi§tmax = 8-6571 (to 4dp)Values
of the observed statisticimagegreater tharthis threshold indicatsignificant evidence
against the correspondingxel null hypothesis, at the 5%vel (fig.82b). The locations
of these 632/0xels in Talairach space can be declaredhasactivation region. The
single step adjusteg-value imageshows thesignificance ofthe activation atach
voxel (fig.82a).
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Figure 82
(a) Single-step adjusteutvalues forthe voxel hypotheses }H assessed by
randomisation test of théstatistic image. (b) Voxels with single-step
adjustedp-valuesbelow levela = 0.05,whose observettstatisticsexceed
the critical threshold of 8.6571. The-pc plane is shown, but computations
were performed ovethe whole intracerebral volumeélhe large activated
region at the posterior of the brain corresponds to the primary \dsttak,
visual area V1. Thewo (insignificant) activations either side of V1 are now
known to be the motion centre, visual area V5, which thigly was
designed to locate.

Compare this result witthose of the parametric approaclagplied tothe “V5”
t-statisticimage in 8.6. Thesingle-step adjusteolvalues for the randomisatidast on
the rawt-statisticimageare smallerthan those of the Bonferroni approatMorsley’s
expected Euler characteristic methodtfbelds, Worsley’'sexpected Euler characteristic
method for Gaussian fields (applied to the Gaussiatis@distic image).

Step-down methods

The step-downest,implemented byhe jump-down algorithm (algorithm c), gives
a final critical value 0f8.6566 (to 4dp) for #&evel a = 0.05 testThis is reached in the
second step, and @nly a slightreduction over the single stepitical threshold. An
examination othere-labellings andnaximashows that th@ytmax for | =2,...47all lie
outside the region rejected by the single $ésp,and are therefoneot excluded by the
first step of thgump-down algorithm. No furthevoxel hypothesewere rejectedising
this reducectritical threshold. Thatep-down methodives no improvemenaver the
singlestep method.

Step-down adjustedp-values were computedising the directalgorithm
(algorithm d), andre shown irig.83a. These were found thffer from the singlestep
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adjustedp-values at only a few pixelsyhere the step-dowp-values were 1/924ess
than the single step ones (fig.90).
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Figure 83
(a) Step-down adjusteg-values forthe voxel hypotheses }H assessed by
randomisation test of theé-statistic image. (b) Voxels with stelown
adjustedp-valuesbelow levela = 0.05,whose observettstatisticsexceed
the critical threshold of 8.6566. The-pPc plane is shown.
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Figure 84
Difference in single-stepnd step-down adjustep-values. Theac-pPc plane
is shown, with theedge ofthe intracerebral area superimposed for
orientation. Pixels shaded blabkd step-down adjustep-values 1/924ess
than the corresponding single-step adjugtedlue.
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6.3.2. Pseuda-statistic image

Statistic images
Pseudo t-statistic images were computed with smoothedample variance

imagegeqn.69). The Gaussian kernel used waghogonal, with FwHM of
10mnmx10mnx6mm in thex, Y, andz directions. The variance-covariance makiof

the kernel is therefore (appendix B:4):

02005 1

e

The smoothing wasmplemented as a movingverage filter, with weights
computed by evaluatinipe kernel on a regular 277x7 lattice of points centred at the
origin, separated bmm inthe x andy directions, andtmm inthe z direction, these
distances beinthe distances betwe&nxel centresThis givesthe numerator of eqn.69
for all the voxels. The denominator was computed by smoothmgs& imagevhose

value was one for intracerebral voxels, and zero elsewhere.
The smoothedample variance imader the “V5” study is shown ifig.85, and

the pseudd-statistic (eqn.70) computed with this variance in fig.86.

3.5
3
25 A
15 /I j II Ok\\‘ »“»"“’*"5‘3‘777;"0“&“ 250
1 T NI ABEERRAALN
L s )
05 s RS NN
Dripinme e
0 R IR
AR
- '¢%W“W““M\\k\‘:‘\%\&i\‘%&*&s&§%§3§&&&§*\\3 \
“ ‘ ““ ‘ () % ) “ “‘ ““ \\‘\\ “ “‘“\}Q\\““\\&&} \\\\\
RSN ”
o~ WY 0

50
-100

Figure 85
Smoothed sample variance of “V5” study subject difference in{fagess9).
Compare this with the (raw) sample variance image (fig.80).
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Figure 86
Paired “pseudot-statistic image for “V5” study. Comparthis with the
pairedt-statistic image (fig.80).

Randomisation distribution for T4

Once again, pseudsstatisticimageswere computed for eaghossible labelling,
and themaxima, |tmaxiw, retained (fig.87). The observedaximum pseudot-statistic,
Tmaxiy 1S againthe largest of the randomisatiealuesfor the maximumintracerebral
pseudd, giving p-value for the omnibus hypothesig, léf 1/924.
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Figure 87
Histogram of randomisation values fibre maximum intracerebrakeudo
t-statistic for the “V5” study.
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Single threshold test

The critical thresholdior a simgle thresholdtest on the pseudsstatisticimage at
level a = 0.05 is they7)tmaxmw = 5.0830(to 4dp). This is exceeded bthe pseudo
t-values of 2779 voxels (fi§8b). The single step adjust@dvalue imageshows the
significance of the activation at each voxel (fig.88a).

0
0.2
0.4
0.6

60
40
20

0

0.8

Figure 88

(a) Single-step adjusteutvalues forthe voxel hypotheses }H assessed by
randomisation test of thepseudo t-statistic image. (b) Voxels with
single-step adjustedp-values below level a =0.05, whose observed
t-statistics exceed the critical threshold of 5.0830. Atiec plane is shown,
but computations were performed owvilre whole intracerebralvolume.
Compare these figures with the correspondioges for the ‘“raw”
t-statistic (fig.82). Thetwo V5 activations either side of V1 are now
significant.

Compare this result witthose of the parametric metho@s6(). Thesingle-step
adjustedp-values for the randomisatidgast on the pseudostatisticimageare smaller
than those of the Bonferroni approach (applied to thetsstatistic image)Worsley’'s
expected Euler characteristic method tffields (applied to the raw-statistic image),
Worsley's expected Euler characteristic mettiod Gaussiarields (applied to the
Gaussianised-statistic image), and Friston’s “Bonferroni” approach (applied to the
AcC-PC plane ofthe Gaussianisettstatistic image). The activated regidentified is also
larger than that from Friston’s suprathreshold cluster sizdest at
thresholdd1(1-0.0001).

Step-down methods

The jump-down algorithm (algorithm c) gives #&nal critical value of5.0399
(to 4dp) for devela = 0.05 testThe firststep is the simple threshaielst, which picks
out 2779activated voxels. The algorithtaok three further steps, thepeking out an
additional37, 9and O activated voxels. Therefore, thresholding the pdestdtistic
image at this levepicks out 2825voxels as activated, a mere 46 more than the
singlestep testfig.89b). The step-down test again provides little improvement.
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Step-down adjustedp-values were computedising the directalgorithm
(algorithm d), andare shown irfig.89a. The reduction in adjustgevalue attained by
using the step-down test over those from the single-step test are shown in fig.90.
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Fig 89
(a) Step-down adjusteg-values forthe voxel hypotheses }H assessed by
randomisation test of the pseudstatistic image. (b) Voxels with stefpwn
adjustedp-valuesbelow levela = 0.05,whose observettstatisticsexceed
the critical threshold of 8.6566. The-pPc plane is shown.
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Image showing reduction in adjustg@values attained by using the
step-down test over those frothe single-step test. The-pPc plane is
shown.
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6.4. Discussion

6.4.1. Permutation tests

So far, we have been considering a randomisagisihfor aparticular activation
study, where thenly assumption ithat of aninitial random assignment of conditions to
subjects. This assumption gives a random elementhéo experimenpermitting
hypothesis testing. It replacd®e assumption of parametdaonalyses thathe scans are
sampled from some population of known foit@wever, these non-parametric methods
are notlimited to experimentsvhere there was aimitial randomisation. Permutation
tests arecomputationallythe same as randomisatidasts, but thgustification for re-
labelling and computingsampling distributionscomes from weak distributional
assumptionsk-or the simpleactivation study experiment, assume that for each \gxel
the values ofthe subjectmean difference imaged;,, are drawn from asymmetric
distribution centred gt,. Under H:py = 0, the subjeainean difference image ktis as
likely asits negative, corresponding to the oppolsitelling ofthe subjects scans. Thus,
under H,, the N statisticimagescorresponding tall possible labellings dahe subjects
scans toaB or BA presentation order aegjually likely. However, assix subjects were
giventhe opposite condition presentatmmler to protecagainst detecting time effects,
only the NCn/2 permutations of théabels retaining this balanshould be considered
(Hochberg and Tamhan&987, p267).This givesthe sametest as theaandomisation
approach presented above. Indewdny authors neglect the theoreticdistinction
between randomisation tests and permutation tests and refer to both as permutation tests.
The advantage of the randomisatiest over thegpermutationtest, is that theandom
allocation assumption of the former is clearly true, yielding a valid test.

6.4.2. Other applications

Clearly these non-parametric methods can be appliednéoy paradigms in
functional neuroimagingFor statistiamageswhere large values indicate evidence
against theaull hypothesis, we have developbeé theory for a single threshdkkst, and
a step-down extensioAll that is required is the concept olahel for the data, on the
basis of which astatisticimage can beomputed, and aull hypothesis specified. For
instance, region of intereahalyses caeasily beaccommodated, as caarallelgroup
designs, comparing a contrgroup with a diseasegroup. Indeed, aandomisation
alternative isavailable for mostexperimental designsSee Edgington (1980) for a
thorough exposition. Consider the following examples:

Single Subject Correlation

It is wished to locatéhe regions of amdividual’s brain in which activity increases
linearly with the difficulty of a certain taskDuring each oM scans the subject is given
the task at a set level of difficulty, the order of presentation having been randomly chosen
from the M! possible allocations. The evidentar linear association ofsr and
difficulty level at a given voxemay besummarised byhe correlation odlifficulty level
and cBF (after some form ofjlobal flow correction), or byany suitablestatistic. The
“labels” here are the actual tashfficulty levels. Under theomnibus null hypothesis
H,,:[the individual would have hadhe same ¢BF whatever the tasklifficulty], the
statisticimagescorresponding t@ll M! possible randomisations die taskdifficulties
are equally likely, and a randomisation test follows as above.
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Single subject activation experiment

It is wished to locate the region of eudlividual’s brainthat is activated by given
task over agiven baselineondition. The subject is scanned an even number of times,
with each successive pair of scans consisting of one under each comyliiggn,M
successive rest-activation pairs. Trder of theconditions within each pair of scans is
randomly chosen.

A statisticimage is formedvhose large values indicate evidence of an increase in
rcBr between théaselineand activation condition. A suitable candidate would be a
paired pseudd-statistic. Under kj:[each scan would hawgven the same CBF image
had it been acquired under the other condition], staiistiges formed by permuting the
labels within individuapairs of scans, are dkely asthe observed one. Thabels here
are the scan condition, “baseline” or “activation”, and the possible labellings are those for
which each successive pair of scandatyelledaB or BA. There areM such pairs, so the
randomisation distribution of the statistic image will consistbinzages.

6.4.3. Other statistics

As we have seen, these non-paramégstscan be applied tany form of voxel
statistic image, unlike parametric analysé®re the choice of statisticlisiited to those
of known distributional forn{for suitable assumptions dhe data)This enables the
consideration of the pseudstatisticimage formed with amoothed variance estimate,
for which no distributionatesults areavailable.The researcher has a free hanthvent
experimental designs and devise statistitéswever it isadvisable touse standard
experimental designs and statistics if these exist, possdalifying the statistic to take
advantage of its setting in an imad@r, example by smoothingtandard tesstatistics
are usually those thatgive the most powerfuiest in theparametric setting, when the
assumptions aregue,and can therefore be expected to retain semisitivity when the
assumptions are slightly in doubt.

The application of these randomisation and permut#gis is alsmot limited to
the single threshold and step-down tediscussed above. The procedgjges the
randomisation distribution of the whole statistisage, and hence adny statistic
summarising a statistic image. By computing exceedence proportion for each statistic
image inthe randomisation distribution, a non-parametric version obrtirebus tests
described in 8.4.1. & 83.4.2. could be obtained.

Non-parametric suprathreshold cluster tests

Suprathreshold cluster tests weiscussed in35. Recallthat the statistiimage
is thresholded at a predeterminlegtel, clusters of voxels with suprathreshaldlues
identified, and the significance of these clusters assessed using some statistic
summarising the statistic image over the cluster, for instance its size:

Randomisation values for tihheaximumsuprathreshold cluster size can be obtained
by computing thenaximumsuprathreshold cluster sif each of the statistimages in
the randomisation distribution. These randomisatadnes can then be usedthsse for
the maximalvoxel statistiovere in thesinglestep methods, to obtain tlkatical cluster
size. A cluster in the observed statigti@agelarger than theritical cluster size indicates
significant evidence againgte (omnibus)null hypothesis fothe voxels inthat cluster.
Single-step adjusteg-values for the clusteomnibus hypotheses can bemputed.
Strong controfollows on a cluster by cluster basis. Btep-down method can also be
used, where each step tests dnenibus hypothesisver a cluster ofoxels identified
from the actual statistic image. If a cluster is found tsidgpaficant,thenall the voxels in



204 Chapter Six: A Non-Parametric Approach

the cluster are omitted in the next step. Thus, non-parametric suprathresholdizieister
tests are possible.

6.4.4. Number of possible labellings, size and power.

A key issuefor randomisation and permutatitests is thenumber of possible
labellings ), as this dictatethe number of observations fromhich the randomisation
distribution is formedFor thepossibility of rejecting aull hypothesis athe 0.05evel
there must be at least p@ssible labellings, in whicbase the observddbelling must
give the most extreme statistic feignificance. Sincéhe observed statistic is always one
of the randomisation values, thenalest p-value that can be obtained from these
methods is 1/ This is shown inthe adjusteg-value imagesfor the pseudo
t-statistic (figs.88 & 89), wheréhe smallest possibl@-value of 1/924 is attained for
most of the activated regioryenthough the observed pseutstatisticimage has a
clear maximum(fig.86). To demonstratetrongerevidence againghe null hypothesis,
via smallerp-values, larger numbers of permutaticar® required. As thpossible
labellingsare determined by theesign ofthe experimenthis limits the application of
non-parametric tests gesigns with moderate subject and/or soan subjechumbers.
The shgle subjectctivation experiment described above traly 2V possible labellings,
64 for a twelve scan session, or 128 for a 14 scan se€demly the greatek, the
greater the power, as this implies more data.

As L tends toinfinity, the randomisation distribution tends to $aenpling
distribution of thetest statistic for a parametrianalysis,under suitable assumptions
(Hoeffding1952). Thus, ifall the assumptions of a parametiwlysisare correct, the
randomisation distribution computed from a langenber of re-labellings is close to the
hypothetical sampling distribution tfe tesstatistic, were dateandomly sampled from
the appropriate modeFor smallerL, non-parametric methods are, in genenaf, as
powerful as parametric methods whbe assumptions of the latter amge. In asense,
assumptions provide extraformation tothe parametric tesgving them the edge.
Comparison of parametric and non-parameinalyses ofhe “V5” data presented here,
would suggest that this discrepancy is not too great. The attraction of the non-parametric
methods is thathey give validtestswhen assumptionare dubiouswhen distributional
results arenot available, or when onlgpproximate theory iavailablefor a parametric
test.

6.4.5. Approximate tests

In manycases th@umber of possible labellings is vdarge, and the computation
involved makes generatingl the randomisatiomalues impracticalFor instance the
single subject correlation study described aboveviigzossible labellings479 001 600
for a twelve scan experiment. Here, approxinteséscan be used (Edgington, 1969b).
Rather than computall the randomisation values, an approximate randomisation
distribution is computedising randomisation values corresponding to a subset of the
possible labellingsThe subset consists of ttreie labelling,andL'-1 labellings randomly
chosen from the set gossible labellings (usuallyithout replacement). The tedtsen
proceed as before, using this subset of the randomisation values. A common ctoice for
is 1000, so the randomisatiealuesare those formed with the obsenlabelling and
999 re-labellings randomly chosen from the set of those possible.

Despite thename, the approximate tests astll (almost) exact. Only the
randomisation distribution is approximate. The randomisation values used can be thought
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of as a random sample of sizetaken from thdull set ofrandomisation values, one of
which corresponds to the observiadbelling. Under thenull hypothesisall members of
the subset of randomisatimaluesare equally likely, sothe theory develops as before.
As the critical threshold is estimated, it has sowaiability about the truesalue that
would be obtained from thell samplingdistribution. There is a loss pbwer beause
of this, but the loss is very small for approximegenpling distributions of siZE00. See
Edgington (1969a & 1969b) for a full discussion.

6.4.6. Step-down tests

Step-down tests ineffectual

The possibility of a largeactivation causing thesests to be conservativas been
discussed, and the step-down tests proposed to countprotilem. From the results
presented here, the step-down methods appetr tomerit the computatiorthey
involve. Examination ofthe randomisatiotistatistic imagesthat yield the largest
maximumvalues, showshat manycorrespond tdabellings thatare almost the opposite
of the truelabelling ofthe experiment-or this data set it appears that thegatively
activated background (giving large statisticsldbellingsalmost the opposite of theue
labelling) influencesthe extreme of the randomisation distribution more than the
positively activated region does labellingsclose to therue labelling. These negative
activations are not “cut out” by a step-down procedure.

Two-sided step-down tests

One solution to this problem would be to consider a two-sstiep-down test.
However, if only a one-sidddst is required, the two-sided approatdy not present an
improvementover the one-sided step-down metheohcethe testevel is effectively
halved. Thisappears to be the case for the “V8ata. A two-sidedsingle-step
randomisation test at level= 0.05, using the pseudstatistic, gives a critical threshold
of 5.3502 (4dp), which 6560 voxels exceed in absolute value. Omitting thesefraxels
the search set, the second step ofjtingp-down algorithnfinds no evidence against
additional voxel hypotheses, and givesiral step-down threshold of 5.3501 (4dp).
Recall that the one-sided step-down randomisagistjusingthe pseudd-statistic, gave
critical value5.0399 (4dp) fotevela = 0.05. A two-sided tesisingthe “raw” t-statistic
image behaves similarly.

In conclusion, it appearshat the step-down methods aret worth the
computational effort involved.

Artefactual deactivations

Thereremainsthe issue of whether a deactivation is real, or an artefagtobgl
normalisation. This was discussed previouslydm§ where it was concluded that for
the “V5” study, @¢BF wasnot condition dependent, anbdat the depressed background
of the “V5” statisticimagesrepresents a trumhibition of rcBF induced by thdarge
increase in the visual cortex.

If decreases are artefactual, them#ty beworth investigating measures o€BF
more sophisticated than theean voxel value, measures wheffectively measure the
background gBr. Another possibility would be to use the jump-down method and
re-normalisethe data afteevery step, omitting the “activated” regions from the
computation of gBF (ga). This latterapproach requires further investigatismce it is
not clear whether strong control ov®ve is maintained.
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6.4.7. Computational burden

The main drawback of the non-parametric tests presented here are the vast
amounts of computation involved. Therrent work was undertaken inAVLAB (The
MathWorks Inc., Natick), amatrix manipulationpackage with extensivligh level
programming features. Thestwasimplemented as a suite of functioi$ie platform
used was a8 MicrosystemssPAR workstation, with 48M of RAM and 160M of
virtual memory. Computing time®r the “V5” data are presented in ttadle below.

More efficient coding in a lowedevel compiledlanguage, such as C, should greatly
reduce therunning times. Everso, consideringthe vast amounts dime andmoney
spent on dypical functional mapping experiment, a dayomputertime seems amall
price to pay for an analysis whose validity is guaranteed.

Computing times

“raw” t-statistic pseudd-statistic
Single-step 8 hours 14 hours
(randomisation values only
Jump-down 16 hours 56 hours
(algorithm c) (two steps @ 8 hours)| (four steps @ 14 hours’
Step-dowrp-value 18 hours 24 hours
(algorithm d)
Table 91

Computing times fothe randomisation tests on the “V5”. All times include
time spent computing the randomisationstatistic images from the 12
subject difference imagestach subject differenceimage consists of
K =77189 intracerebralvoxel values, held in double precision. The
computational “tricks” of considering onhyalf the labellingsand of storing
the sum of squares of thmubject difference images, were utilised in the
code(recall 86.2.2.). Computationgere undertaken in MTLAB on a $N
MicrosystemsPARC workstation.
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6.5. Conclusions

In this chapter a new method has been presentethdéanalysis of functional
mapping experiments. Established non-parametric techniques have been extémded to
special multiple comparisons problem, gmduce a tesitvith localising power, that is
(almost) exactrelatively simple, and which hasumerous advantages ovexisting
parametric methods.

These non-parametric tests gadid and (almost) exagivenminimal assumptions
on themechanismgreating the data, in contrast ésisting parametric analysesghich
rely on approximationand strong assumptions. Titamdomisatioriestassumes only an
initial random allocation in théesign ofthe experiment, an assumptitvat canclearly
be verified. Permutatiotestsassume vague propertigsout thedistribution of thedata,
such as symmetrabout some location. Because tagsumptions arérue, and no
approximations are made, there is no need to aspes#icity using simulatedata or
rest-rest comparisons. That the tests force practitionerghibé carefully about
randomisation and experimental design is no bad thing.

The tests are also very flexible. They can be applieshygaradigmvhere there is
a concept of dabel for the data, fromvhich a statistic can be formed, andnall
hypothesis specified. Ahe distribution of the statistimage isnot required to be
known, images ofnon-standard test sistics can be analysethr examplethe pseudo
t-statistic computed with smoothed variance considered Rerher, any sensible
statisticsummarising atatisticimage may beised to assess evidence dfignal. For
example,the maximum voxel value ormaximum suprathreshold cluster sizeay be
taken as statistics fasummarisingstatistic images, leading texact non-parametric
single threshold and suprathreshold cluster size tests respectively.

The disadvantages of the method are the computatiotved, andthe need for
experiments with enough replications or subjectgite a workable number of possible
labellings.

The power of these method=mains to be examinedoroughly. In general, non-
parametric methods are outperformed by parametric methogisthe assumptions of
the latter are true. Foiairly large experiments (wittmany possible labellings) the
discrepancymay not be greatparticularly if the parametric methods are conservative.
Present experience suggests that the non-parametric methods and the current parametric
methods givesimilar results for studies where the assumptions of the latter are
reasonable. This could Examined(at greatomputational expense) by simulation.
However, there aranany situations where the assumptions of current parametric
methods are in doubt. In these situations the non-parametric methods prowdsy the
valid method ofanalysis. Inaddition, theability to analysenon-standard statistimages,
such as the pseudsestatistic considered here, appears to afford the non-parametric tests
additional power over the parametric methodgich are constrained to statistics for
which distributionakesults arevailable. Experience of applyihgth methods to wide
range of data sets would be valuable.





Andrew
Note: Page 208 intentionally left blank.


