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1.1 Motivation and aims

The aim of functional neuroimaging is to understand the functional organization of the
brain. This aim incorporates several aspects of functional neuroanatomy : the location of
processing areas, the time course or dynamics of their activities, and the nature of their
interactions. Changes in neuronal activity induce variations in cerebral metabolism, blood
flow, blood volume and blood oxygenation (Frackowiak et al., 1997), and electromagnetic
fields (Nunez, 1981; Hamaéldinen et al., 1993; Malmivuo & Plonsey, 1995). Changes in
these haemodynamic and electromagnetic signals can be measured by several noninvasive
techniques, such as positron emission tomography (PET), functional magnetic resonance
imaging (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG).

Hamodynamic responses in the brain are recorded by PET and fMRI with a good
spatial resolution, of the order of millimetres. These indices of neuronal activity are tem-
porally limited by the latency and slow time-constants of the haemodynamic response of
the vessels. One standard and popular way of analysing the cerebral metabolism images
obtained by fMRI or PET is to treat these three-dimensional images with a voxel based
approach to detect the area of (de-)activation between experimental conditions: In brief,
images are spatially normalised into a standard space (Talairach & Tournoux, 1988; Friston
et al., 1995a; Ashburner & Friston, 1999), and smoothed. Parametric statistical models
are assumed at each voxel, using the General Linear Model to describe the variability in
the data in terms of experimental and confounding effects, and residual variability (Fris-
ton et al., 1995b). Hypotheses expressed in terms of the model parameters are assessed at
each voxel with univariate statistics. This gives an image whose voxel values are statis-
tics, a Statistic Image, or Statistical Parametric Map (SPM;, SPM,, SPMy). Temporal

11
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Figure 1.1: Forward problem: determine the electromagnetic field at the scalp from the
known sources and volume conductor. Inverse problem: determine the sources from
the known electromagnetic field at the scalp and volume conductor. (Picture taken and
adapted from Neurosoft, Inc: http://www.neuro.com)

convolution of the General Linear Model for fMRI enables the application of results from
serially correlated regression, permitting the construction of statistic images from fMRI
time series! (Friston & Worsley, 1995).

By contrast, direct measurements of the electromagnetic field (EEG and MEG) pro-
duced by neuronal activity have a temporal resolution of less than 1 millisecond. But
noninvasive measurements of the electromagnetic field can only be obtained from a limited
number of sensors on the scalp. Event-related potentials (ERPs) are voltage fluctuations
that are associated in time with some physical or mental occurrence. These potentials can
be extracted from the ongoing EEG by means of filtering and averaging. The time series
of ERP EEG (or MEG) measurements are statistically compared between conditions: the
difference between conditions can be observed spatially, the field pattern on the scalp is
modified in amplitude or shape, and/or temporally, the latency of the field pattern relative
to the trigger onset is modified (Rugg & Coles, 1995; Picton et al., 2000).

The Forward Problem consists in determining the electromagentic field at the scalp
from a known source configuration and volume conductor. The Inverse Problem de-
scribes the opposite situation: given the volume conductor and the electromagnetic field
at the scalp, the location and time course of the sources is sought. The Forward Problem
and Inverse Problem are illustrated in figure 1.1. In order to solve the Inverse Problem,
the solution of the Forward Problem, even if approximate, must be known.

!The multiple comparisons problem of simultaneously assessing all the voxel statistics is addressed using
the theory of continuous random fields, assuming the statistic image to be a good lattice representation
of an underlying continuous stationary random field. Results for the Euler characteristic lead to corrected
p-values for each voxel hypothesis (Worsley, 1994). In addition, the theory permits the computation of
corrected p-values for clusters of voxels exceeding a given threshold, and for entire sets of supra-threshold
clusters, leading to more powerful statistical tests at the expense of some localising power.
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Figure 1.2: Lack of uniqueness in the inverse problem: In this simple model the source is
represented by a single battery, and the conductor volume by one or two resistors. The four
networks have the same Thevenin equivalent : an electromagnetic force of 2 Volts in series
with a resistance of 4 Q. Therefore one cannot distinguish among these different inverse
candidates without measurements within the source region itself, or with prior information
on the shape of the network. (Figure taken from Malmivuo & Plonsey (1995).)

The Forward Problem is a “simple electromagnetic problem” that can be expressed and
solved with Maxwell’s equations. Its difficulty lies in modelling the volume conductor, a
human head, and the sources, the neuronal activity of the brain. It is thus necessary to
understand cerebral anatomy and the nature of neuronal activity to solve the Forward
Problem. Once the relationship between brain electrical activity and electromagnetic
scalp fields has been established, the Inverse problem can be approached. Non-invasive
measurements of the electromagnetic field can only be obtained from a limited number of
sensors on the scalp, and therefore the spatial configuration of neuronal activity cannot
be determined uniquely if based on EEG and/or MEG recordings alone (Nunez, 1981).
The first theoretical paper, which stated that the inverse problem does not have a unique
solution, was written by von Helmholtz (1853). The lack of uniqueness in the inverse
problem is illustrated by a simple example in figure 1.2 : In this simple model the source
is represented by a single battery, and the conductor volume by one or two resistors. The
four networks have the same Thevenin equivalent : an electromagnetic force of 2 Volts in
series with a resistance of 4 Q. In order to make the inverse problem well posed, it is thus
necessary to impose additional constraints on the solution.

1.1.1 Forward Problem

The brain consists of two hemispheres separated by the longitudinal fissure. The hemi-
spheres are further divided into lobes by two deep fissures: the Rolandic fissure cuts
vertically the outer part of both hemispheres and the Sylvian fissure is almost horizontal.
There are four lobes in each half of the cortex: frontal, parietal, temporal and occipital,
as depicted in figure 1.3. Each lobe assumes specific functions. The total surface of the
cortex is about 1600 cm?, highly folded (convoluted) to fit in the skull compartment.

The neurones and glial cells are the principal “building blocks” of the brain. There are
about 10'%— 10" neurones in the brain, and they are vastly outnumbered by the glial cells.
The glial cells ensure the physical structure of the brain, the proper concentration of ions
and the transport of the nutrients between blood vessels and brain tissue. Neurons are the
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Figure 1.3: The brain consists of two hemispheres separated by the longitudinal fissure.
The hemispheres are further divided into lobes by two deep fissures: the Rolandic fissure
cuts vertically the outer part of both hemispheres and the Sylvian fissure is almost hor-
izontal. There are four lobes in each half of the cortex: frontal, parietal, temporal and
occipital. (Pictures taken from AMA Health Insight: http://www.ama-assn.org)

information-processing units of the brain. The cell bodies and dendrites of the neurones
are found in the grey matter, which constitutes the thin outer layer of the cortex and
the subcortical structures like the thalamus. The interior of the brain is largely occupied
by nerve fibres, called white matter because of the mylenated appearance of the axons
that constitute it, see figure 1.4. These axons connect different cortical areas, possibly in
different hemispheres, and between the cortex and the subcortical structures. The study
of the electrical activity of the brain depends strongly on cortical anatomy :

e cellular-level structures determine how neuronal electrical activity produces macro-
scopic current sources detectable outside the head;

e the local electrical conductivity influences the solution of the forward problem;

e the anatomy of the brain at the sulcal level can be used in the constraint of the
inverse problem solution.

The general structure of the head is rather complicated. The brain is surrounded by
thin membranes and it contains ventricles filled with cerebro-spinal fluid. The skull, scalp
and other parts of the head (eyes, vessels, nerves, etc) present various types of tissues
and cavities of different electrical conductivity, as can be seen in figure 1.4. Moreover the
electrical conductivity of brain tissue is highly anisotropic: conduction is 10 times better
along an axon fibre than in the transverse direction (Malmivuo & Plonsey, 1995). These
complications are generally ignored as, at the present time, it is impossible to measure
accurately in vivo the details of the conductivity and to take them properly into account
in the solution of the forward problem (Marin et al., 1998; Huiskamp et al., 1999). The
head is thus usually modelled as a set of concentric homogeneous volume conductors: the
brain (comprising the white and grey matter), the skull and the scalp. Sometimes a fourth
volume, the cerebro-spinal fluid layer, is added in the model between the brain and skull
volume.

A neurone can be divided into three main parts, as shown in figure 1.5: the cell body
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Figure 1.4: Coronal (left) section, at the level of the ears, and sagital (right) section, near
the head midline, of my T1 weighted MR image. The grey-white matter distinction is
clearly visible on the coronal section. The complexity of the head anatomy is evident on
the sagital section.

(or soma), containing the nucleus, is the “processor”; the dendrites, threadlike extensions
receiving stimuli from other neurones, are the “receivers”; the axon, a single long fibre
carrying the impulse from the soma to other cells, is the “transmitter”. In the grey matter,
the neurones are organised in layers. Three principal types of neurones are found in the
cortex : stellate, spindle and pyramidal cells. The later are important for the scalp elec-
trophysiology because their apical dendrites run parallel to each other through the layers.
Since the geometry of neurones dictates the orientation of the current flow, the resulting
electrical current flowing through those regularly organised dendrites is perpendicular to
the cortical sheet of grey matter. The dendrites and the soma have typically thousands of
synapses (connections) from other neurones, forming a hugely complicated network.

At rest, the inside of the cell is negatively polarised relative to the outside, with an
intracellular potential of about -70mV. When an action potential (AP) travels along the
axon of the presynaptic cell and reaches a synaptic terminal, transmitter molecules are
liberated from the synapse into the synaptic gap. These molecules attach themselves to
receptors of the postsynaptic cell, opening specific ion channels through the membrane?.
The resulting flow of ions (mainly Na*, K+ and CI~) changes the membrane potential in

the postsynaptic cell. This event gives rise to the postsynaptic potential, or PSP.

The PSP is said to be excitatory (EPSP) if the cellular membrane is depolarised (the
intracellular potential becomes less negative), or inhibitory (IPSP) if the membrane is
hyperpolarised (the intracellular potential becomes more negative). Excitatory synapses

2The active behavior of the membrane is modelled by Hodgkin-Huxley equations (Malmivuo & Plonsey,
1995, chap. 4).
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Figure 1.5: A neurone and its three principal parts: the cell body (or soma), containing
the nucleus, is the “processor”; the dendrites, threadlike extensions receiving stimuli from
other neurones, are the “receivers”; the axon, a single long fibre carrying the impulse from
the soma to other cells, is the “transmitter”.

are generally located on the dendrites, while the inhibitory synapses are often attached
to the soma itself. When the intracellular potential reaches some threshold (typically
around -40mV), the neurone fires an action potential. When the excitatory input becomes
stronger, the amplitude of the action potential remains the same but the frequency of
firing increases.

When an AP reaches a synapse and generates a PSP, the ions flow causes an electric
field and a current along the interior of the postsynaptic cell. The strength of this current
source decreases with the distance from the synapse but, from far away, it is perceived
as a current dipole oriented along the dendrite. On the contrary, the AP travels along
the axon with unattenuated amplitude because of active exchanges of ions through the
axon membrane. The moving AP can be approximated by two oppositely oriented current
dipoles, which is equivalent to a quadrupole. The three main differences between PSP and
AP are: 1. their amplitude, an AP is approximately 10 times larger than a PSP, 2. their
time course, 10-20 ms for a PSP and only about 1 ms for an AP (see figure 1.6), and 3.
their equivalent current source model, a dipole for a PSP and a quadrupole for an AP.

The current source and electromagnetic field generated by a single PSP or AP is ob-
viously not strong enough to be detected on the scalp. The electrodes used in scalp EEG
are large (a few millimetres in diameter) and remote, they can only detect summed ac-
tivities of a large number of neurones. The electromagnetic field generated by a dipolar
source (like a PSP) decreases with distance approximately as 1/r2, more slowly than the
1/r3-dependent field of a quadrupolar source (like an AP). In order to be detectable, the
neural activity must sum up efficiently, thus the time course of the current sources must be
overlapping. Because of their very short time course, synchronous firing of APs is unlikely
but the long time course of PSP allows them to superpose temporally. Therefore, even
though APs are much larger in amplitude than PSPs, it is accepted that the PSP are the
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Figure 1.6: A postsynaptic potential (PSP), left, and an action potential (AP), right, as
a function of time. There a three major differences between a PSP and an AP: 1. The
amplitude of an AP is about 10 times larger than a PSP. 2. A PSP last about 10-20 ms,
and an AP only about 1 ms. 3. A PSP can be modelled by a dipolar current source, and
an AP by a quadrupolar current source.

generators of scalp fields usually recorded in EEG and MEG (Hamél&inen et al., 1993). If
the dendrites supporting PSPs are randomly oriented or radially oriented on a complete
spherical surface (or small closed surface), no net electromagnetic field can be detected
outside the immediate vicinity of the active neurones, this is called a “closed field” con-
figuration. Because of the uniform spatial organisation of their dendrites (perpendicular
to the cortical surface), the pyramidal cells are the only neurones that can generate a
net current dipole over a piece of cortical surface, whose field is detectable on the scalp.
This is named an “open field” configuration. These conditions of coherence, in space and
time, of the neuronal activity imply that the subcortical grey matter nuclei may not be
generating any net signal outside the head.

1.1.2 Inverse Problem

One common approach to solving the Inverse Problem is to consider that the EEG/MEG
signals are generated by a relatively small number of focal sources (Miltner et al., 1994;
Scherg & Ebersole, 1994; Huang et al., 1998; Scherg et al., 1999; Aine et al., 2000), each
of which can be modelled as a single fixed or re-orientating dipole. The idea is to render
the inverse problem overdetermined by considering fewer unknown parameters than the
independent measurements available. The locations, orientations, and strengths of these
“equivalent current dipoles” (ECD), six parameters in all, can be estimated by minimising
the difference between the predicted and actual EEG/MEG measurements. An additional
constraint can be derived from the assumption that the sources are temporally indepen-
dent (Mosher et al., 1992). The fitting procedure involves a multidimensional, non linear
optimisation procedure. As the time required to solve the optimisation problem grows ex-
ponentially with the number of ECDs, the global optimum can be found only for models
involving very few ECDs. For models with a large number of ECDs, approximate tech-
niques have to be used, where the solution depends upon the initial estimate of the dipoles
locations and orientations. In all ECD-based methods, the solution depends heavily on
the number of dipoles assumed but, in general, the actual number of ECD cannot be
determined a priori.
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Another approach is to consider a priori all possible fixed source locations. The prob-
lem of determining the strength of each dipole (or dipole components: orientation and
strength) then becomes a linear one. This continuous current source model is more bio-
logically plausible (for sufficiently dense source distributions) than the ECD model. But,
because the number of possible source locations considered simultaneously is, in general,
much larger than the number of sensors, this is an underdetermined problem. In order to
ensure the uniqueness and stability of the solution, constraints must be applied. For exam-
ple, existing methods use one of the following constraints: probabilistic (Greenblatt, 1993;
Baillet & Garnero, 1997; Baillet, 1998), maximum entropy (Huang et al., 1997), minimum
Ll-norm (Uutela et al., 1999), (weighted) minimum L2-norm (Sarvas, 1987; Himaéldinen
& Ilmoniemi, 1994; Brooks et al., 1999), maximum smoothness (“Loreta”, i.e. “low reso-
lution electromagnetic tomography”) (Pascual-Marqui et al., 1994; Pascual-Marqui, 1995,
1999), optimal resolution (Backus & Gilbert, 1970; Grave de Peralta Menendez et al., 1997;
Grave de Peralta Menendez & Gonzalez Andino, 1999). Although mathematically con-
venient, not all the above constraints are based on actual brain physiology and anatomy,
and thus can lead to relatively poor spatial resolution or biased solutions.

The weighted minimum L2-norm (WMN) constraint has one great advantage: the
method provides a linear analytical solution that can be easily and directly computed. In
this thesis I introduce an approach based on the WMN method that imposes constraints
using anatomical and physiological information derived from other imaging modalities.
Three assumptions, based on neuroanatomy, can be made about the sources of brain elec-
tromagnetic activity (Nunez, 1981; Hamaéaldinen et al., 1993; Dale & Sereno, 1993): the
sources are located in grey matter; they are oriented orthogonally to the cortical sheet; and,
for a sufficiently dense dipole distribution, they possess locally coherent activity (or smooth
activity along the cortical sheet). Further constraints can be introduced in the weighting
of the WMN solution by making use of information derived from hsemodynamic mea-
sures of brain activity (Rugg, 1998; Liu et al., 1998; Dale et al., 2000). These constraints
are predicated on the hypothesis that the synaptic currents generating the EEG/MEG
signals also impose metabolic demands, which lead to a haemodynamic response measur-
able by PET or fMRI. There are however reasons to consider that the coupling between
electromagnetic (EEG/MEG) and hemodynamic (PET/fMRI) signals is not necessarily
well behaved or deterministic (Rugg, 1999), and therefore the prior location information
derived from hseemodynamic measurements should be regarded as probabilistically.

Although the methods described in this thesis apply to both electroencephalographic
(EEG) and magnetoencephalographic (MEG) data, only EEG data will be used to illus-
trate the approach in this work. The results obtained are directly and easily transferable
to MEG data. When both EEG and MEG data are available simultaneously, they should
be used simultaneously to solve the source localisation problem (Fuchs et al., 1998; Baillet
et al., 1999) as the two kinds of data contain complementary information.

1.2 Overview of chapters

The thesis is divided into two main parts: firstly, the solution of the Forward Problem
and secondly, the solution of the Inverse Problem. The first part of the thesis is a general
and extensive introduction to the Forward Problem as solved by the Boundary Element
Method (BEM). This problem has been studied, solved and the results applied in differ-
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ent fields of science, e.g. electrical engineering and geology, for more than a century, but
it only recently has been applied in domains such as EEG, MEG, electro- and magne-
tocardiography (ECG and MCG) or “transcranial magnetic stimulation” (TMS). Apart
from some minor technical details, there is no major original contribution to the source
localisation problem in chapters 2, 3 and 4.

Within the first part of the thesis, the Boundary Element Method (BEM) is presented
in chapter 2. The BEM equation is an integral form of Maxwell’s equations, obtained
using Green’s theorem (presented in appendix A). In order to obtain the analytical BEM
equation, two main assumptions are made about the electric activity of the brain and
the conductivity of the head: first, a quasistatic approximation of Maxwell’s equations is
adopted and, secondly, the head volume is divided into sub-volumes of homogeneous and
isotropic conductivity. The BEM allows the estimation of the electric potential only on
the surfaces separating those sub-volumes.

The BEM equation can be analytically solved for particular layouts, such as concentric
spheres, e.g. the three sphere shell model as presented in appendix B. In order to solve
the BEM equation for irregular surfaces, i.e. for a realistic head model, a general but
numerically approximate solution is introduced in chapter 3. The surfaces on which the
potential is computed are tessellated into flat triangles and the sources of the brain electric
activity are modelled by current dipoles. On each flat triangle, the potential is then
approximated by a simple function: a constant or linear function evaluated at the centre
of gravity or the vertices of the triangle. With these potential approximations, the BEM
equation can be rewritten in a matrix form. As non-invasive EEG measurements can only
be obtained from a limited number of electrodes on the scalp, the matrix BEM equation
is only partially solved using standard algebra techniques.

In chapter 4, the validity of the numerical solution of the BEM equation is assessed by
comparing both analytical and numerical solutions of the BEM equation in a three sphere
shell model. The two solutions are compared for different approximations of the potential
over the triangles and various densities of triangles on the three surfaces. The simulations
showed that a linear approximation of the potential over each triangle should be preferred,
as well as a denser meshing of the inner surface, i.e. the interface between the brain and
skull volume. The best set of parameters is then applied onto a realistic head model
obtained from a MR image to generate the “lead field” between the 61 approximately
equidistant electrodes on the scalp surface and the 12300 dipoles spread inside the brain
volume. This “lead field”, the approximate solution of the Forward Problem for the head
and source model chosen, will be used in the second part of the thesis.

The second part of the thesis is dedicated to the solution of the Inverse Problem. The
general and theoretical approach to the constrained solution is introduced in chapter 5.
Spatial constraints on the sources — location, orientation and coherence — are used to
reduce the solution space a prior: by modelling the spatial source distribution with a
set of spatial basis functions. These spatial basis functions are chosen in a principled
way using information theory. Similarly, temporal constraints — window of activity and
temporal coherence —, are used to generate a set of temporal basis functions. The re-
duced problem is then solved with a classical WMN method; the solution using basis
functions sets being named the “Informed Basis Functions” (IBF) solution. When the
IBF solution is calculated, other “soft” constraints (“soft” in the sense that only “hard”
anatomical constraints are used to a priori restrict the solution space) can be included to
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further influence the source reconstruction. When noise is contained in the data, noise-
regularisation is necessary to carefully balance, through an hyperparameter A, the influence
of the model versus the priors according to the level of noise. An iterative but system-
atic procedure, “Restricted Maximum Likelihood” solution (ReML solution), is presented.
This “Expectation-Maximisation” (EM) algorithm allows the joint estimations of the so-
lution of the problem and the hyperparameter (controlling the influence of the noise) that
determines this solution.

In chapter 6, the approach proposed in the previous chapter is applied with a realistic
head model, extracted from a structural MR image, and real EEG data: the anatomical
and temporal constraints are extracted and the basis function sets established in a user-
independent way. The soft constraints are motivated probabilistically. Deep and shallow
sources are rendered more likely to influence the electric potential equally at the electrodes
irrespective of depth. A second important constraint may be derived from fMRI indices of
activation : the prior probability of whether a source is active or not is modified according
to the fMRI activation map (or any other location prior). Two commonly employed
alternative solutions, a direct WMN solution and a Maximum Smoothness (MS) solution,
are presented. The WMN solution uses only partial anatomical constraints (location and
orientation of the sources but not their spatial coherence), and allows the inclusion of
location priors. With the MS solution, the sources are located in the grey matter and the
smoothest solution in three dimensions is obtained irrespective of the actual anatomical
orientation and correlation of the sources. Moreover no location priors can be employed.

Simulated data were used in chapter 7 to explore a range of values of the hyperpa-
rameters involved. The IBF solution as well as the direct WMN and MS solutions were
tested with various types of data: single or double simultaneously active sources, with or
without location priors, and with noise-free or realistically noisy data. The location priors
employed could be either accurate or mislocated (i.e. centred or not on the location of
the active source), and for different levels, weak or strong. For the simulations with noisy
data, two levels of signal-to-noise ratio were employed, low or high. The results of the sim-
ulations showed clearly the advantage of combining anatomical and functional constraints,
in an approach such as the IBF solution, in terms of both accuracy and robustness of the
solutions obtained. The ReML algorithm also proved to be an efficient way to estimate
the hyperparameter A as the level of noise regularisation was automatically adapted to
the level of noise in the data.

The second part of the thesis introduces some original ideas into the domain of the
EEG source localisation problem, for example: The extraction of the anatomical con-
straints (source location, orientation and coherence), based on a fully automated and
user-independent procedure, does not require the complete reconstruction of the cortical
surface, contrary to most procedures published so far. The a priori reduction of the solu-
tion space by the spatial IBF allows a 2-step approach and a better control of the spatial
constraints imposed. The noise influence is controlled using temporal IBF and the ReML
algorithm. Finally the thesis contains a fairly exhaustive testing of the proposed IBF so-
lution and two other classical solutions under various conditions and different parameters
values.
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1.3 Notation conventions

Here are the notation conventions adopted for the rest of this work.

A
a

matrix of size m X n.

vector of size m x 1: a={[a; as ...
transpose of matrix A and vector a.
vector of size 3 x 1: @ = [ag ay a,]' = az € + ay €, + a €.
scalar values.

m
2-norm of vector a: ||a]| = Za?
\ i=1

m n
Frobenius norm of matrix A: [|A[| = | YY" A2,
i=1j=1

am]'.

determinant of matrix A.

vector defined by the absolute value of the elements a; of vector a.

length (or 2-norm) of vector @: |@| = \/a2 + a2 + a2.

absolute value of scalar a.
value of the maximum element of a.
vector containing the elements of the leading diagonal of A.

leading diagonal matrix with elements defined by the elements of a.

m
trace of the m x m square matrix A : trace(A) = Z A
1

1=
singular value decomposition of matrix A: A = USW!
scalar product of @ and b.
vectorial product of @ and b.

- o) 5 5
gradient of a: Va = é{sgx + 5_“ g, +5£ g,
divergence of @: Vi = 00z + 9y i &‘

rotational of @:

eXC;:(%_&Lj)gﬁ(%_%)gﬁ(%_%

0y ) ) (5,3 (5m2 ox
S 0“a  0%a  d°a
Laplacian of a: V’a=V(Va) = — + — + —
aplacian of a a (Va) 522 + 57 + )
Kronecker product.
identity matrix of size m X m.
vector of ones 1, = [1 1 ... 1] of size m x 1.

0y

)e.
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2.1 Maxwell’s equations

In the forward problem, the conductivity of the head (or at least in its simplified model)
and the location of the electric current generators in the brain are assumed to be known,
and Maxwell’s equations can be used to calculate the electric (and magnetic) field on the
surface of the scalp. In differential equation form, Maxwell’s equations can be stated like
this (Ramo et al., 1984):

VE = P (2.1a)
€
VB = 0 (2.1b)
L oB
E = —— 2.1
V x En (2.1c)
. OF

where:

E is the electric field

e B is the magnetic field

7'is the current density

p is the charge density

23
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e ¢ is the electric permitivity

e 1 is the magnetic permeability

This set of equations, together with certain auxiliary relations and definitions (like
Ohm’s law and the continuity equation), is the basic set of equations of classical electric-
ity and magnetism, governing all electromagnetic phenomena. In the case of bioelectric
phenomenon such as the electro- and magnetoencephalography (EEG and MEG), we are
only interested in the electric (and magnetic) field E (and B). The treatment of Maxwell’s
equations can be significantly simplified from the outset by noting that the media involved
have no significant capacitance: they are either purely resistive or the frequency of the
activity is sufficiently low to neglect the capacitance (even sharp pulse with small rise
time are not disturbed). So there is no electromagnetic wave propagation phenomenon
(Hamalainen et al., 1993; He, 1998).

This assumption allows us to adopt a quasistatic approximation of Maxwell’s equations,
which means that, in the calculation of E (and B), 0E /0t and 0B /0t can be ignored as
source terms. Physically, these assumptions mean that the instantaneous current density
depends only on the instantaneous current sources and follow the superposition theorem.
Equation 2.1c then becomes V x E = 0 and therefore the electric field E can be expressed
as the negative gradient of a scalar field, the electric potential V :

E=-VV (2.2)

By the definition of conduction current (Ohm’s law) and the continuity equation, we also
have these relations:

7=0ckE (2.3)
gy= 2P (2.4)
= ot '

“Current sources” are by definition a distribution of forced current density j;. The
current sources jy can be seen as the summed coherent electric activity of the activated
cell membranes, i.e. the current density directly produced by the neural activity, the sink
and the source current terms being arbitrarily close. The total current density 7;,; flowing
through the media is equal to the sum of the imposed sources j; and the return current 7;.
The later is the result of the macroscopic electric field on charge carriers in the conducting
medium: j; = oF. With equations 2.3 and 2.2, we have:

Jiot = UE—‘"".Tf (2.5a)
= —oVV +J (2.5b)

By neglecting the capacitance of the head tissues, there is no charge accumulation in
the volume or on the interfaces, i.e. the charges are redistributed in a negligible time.
This translates mathematically by setting the divergence of the current density to zero
and 2.4 becomes: .

Vit =0 (2.6)

By combining 2.5b and 2.6, we obtain the simplified Maxwell’s equation linking the
current sources 7y and the electric potential V' :

V(oVV) = V] (2.7)
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Equation 2.7 can be solved for V in various ways depending on the geometry of the
model, the form of the conductivity o and the location of the sources j;. An analytical
solution is possible only for particular cases: highly symmetrical geometry (e.g. concentric
spheres or cubes) and homogeneous isotropic conductivity, see appendix B. For the other
more general and useful cases, numerical methods are required. Common methods are
the Finite Element Method (FEM) (Chari & Silvester, 1980; van den Broek et al., 1996;
Klepfer et al., 1997; Buchner et al., 1997; Awada et al., 1997), the Finite Difference Method
(FDM) (Rosenfeld et al., 1996; Saleheen & Ng, 1997, 1998) and the Boundary Element
Method (BEM) (Becker, 1992; Ferguson & Stroink, 1997; Mosher et al., 1999).

The FEM and FDM make no assumption about the shape of the volume conductivity
and allow the estimation of V' at any location in the volume. The volume is tessellated into
small volume elements in which Maxwell’s equations are solved locally. As each volume
element is characterised by its own conductivity (isotropic or not), any type of conductive
volume layout can be modelled. With the FEM, the volume elements are of arbitrary
shape (usually tetrahedron or regular polyhedron), while the volume elements are kept
cubic for the FDM. By contrast, the BEM is based on the hypothesis that the volume is
divided into sub-volumes of homogeneous and isotropic conductivity, and the potential V'
is only estimated on the surfaces separating those sub-volumes.

The FEM and FDM offer thus a more general solution of the forward problem but
the complexity of the numerical problem and the computing time needed to solve it are
greatly increased compared to the BEM. Moreover, the conductivity throughout the vol-
ume, necessary to make full use of the FEM and FDM power, cannot be directly estimated
for individual patients. Therefore a simple “three sphere shell” model with an analytical
solution is generally used in the field of EEG source localisation problem. A more anatom-
ically realistic but still tractable approach can be achieved using the BEM to solve the
forward problem. The FEM and FDM will not be further discussed in this work.

2.2 Boundary conditions and Green’s theorem

2.2.1 Boundary conditions

Consider S; the surface separating 2 volumes, vol~ and vol™, of respective conductivity
o~ and o". Let’s define dS; an infinitesimal element of this surface and 7 the unit vector
normal to the surface oriented from the inside towards the outside of the surface, or by
convention from vol~ to vol™*, as shown in figure 2.1.

There are no sources located on the surfaces between homogeneous volumes and the

normal current through the surfaces is continuous, so on surface S;, we have 7;,; = —oVV
and

o~ VV~dS, = U+Vv+d91 (2.8)
where d_é’l = 71dS; is the oriented infinitesimal element of this surface. Moreover the

potential V must also be continuous on S :

V7(S) =V*(S) (2.9)
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Figure 2.1: The surface S; separates the two homogeneous volumes vol~ and volt of
isotropic conductivity o~ and oT. dS; is an infinitesimal element of the surface S; and 7@
is the unit vector normal to S, oriented from vol™ to vol™.

The relations 2.8 and 2.9 provides the two boundary conditions necessary to solve the
quasistatic form of Maxwell’s equations as expressed in 2.7.

2.2.2 Green’s theorem

Let dvy be an element of the homogeneous regional volume vol (where k = 1,..., N, and
N, is the number of homogeneous volumes) and dS; be an oriented element, dS; = 7 dS;, of
the surface S; separating two regions of homogeneous conductivity (where [ = 1,..., Ng

and Ng is the number of such surfaces). Take now 1) and ¢ two well behaved functions in
each region voly, then Green’s theorem states (Smythe, 1950, chap. 3, pp. 48-58) :

N .
S [ [or S — ) — o (S — 6] )
] 1

N, . B ) )
= Z/l [¢V(0N¢)—¢V(okw)] dvpy  (2.10)
L Jvolg

where the sums run over the NV, volumes and the Ng surfaces, and the symbols — and +
refer to the volumes inside and outside surface S,.

The forward problem consists in determining the electric potential V' from the current
sources distribution 7y knowing the quasistatic form of Maxwell’s equation 2.7 and the
boundary conditions 2.8 and 2.9 using a BEM approach. This can be achieved by using
the Green’s theorem 2.10. Many expressions can be derived from 2.10 with an appropriate
choice for the functions ¢ and 1.

2.3 Analytical BEM equation

In 2.10, if we take ¢ = 1/r where r is the distance between an arbitrary point 7 and the
origin ¢ of space, then for smooth surfaces 2.10 becomes, as shown in appendix A and
(Geselowitz, 1967) :
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%:j [ e S =9t~ o = ot s ) |

Ny
=4dnwod + Z/ l % \% (akﬁﬁ) dvy, (2.11)
L Jvoly

where, in the first term of the right hand side, o and ¢ are evaluated at the origin o of
space, i.e. for r = 0.

Consider ¢ = V' and suppose that 7} is distributed in only one homogeneous volume,
the brain volume wvoly,., then thanks to the simplified Maxwell’s equation 2.7 and the
boundary conditions 2.8 and 2.9, equation 2.11 becomes:

—Z —ol /SVV< >d:§'l:47mV+ —ijd'ub,« (2.12)
!

voly, T

By the divergence theorem and the definition of the divergence operator ﬁ, we have :

L 7 o /1 1o
o) BeLpeC) te e e
vol r s T vol r r

As there are no sources 7y on any surface S;: 75(S;) = 0, thus:

/1
V dv = —/ 7 V(—) dv 2.14
vol T Z vol Zl T ( )

With relation 2.14, equation 2.12 becomes:

Ng

droV = ﬂﬁ(%) dvop, — Y (0, — o )/Sl VV( ) ds; (2.15)

voly, I

On the left hand side of 2.15, V is still evaluated at the origin o of space (an arbitrary
point) and r is the distance from that origin to a point on the surface S; (in the surface
integrals) or in the volume volp, (in the volume integral).

Let’s consider # the point where V is evaluated, 5" a point on the surface S; and 7' a
point in the volume voly,.. The distance r between the point # where V is evaluated and
any point 57 on the surface S; (or 7' in the volume voly,) will the be expressed by |Z — 5’|
(or |# —7'|). Thus equation 2.15 is rewritten (Sarvas, 1987) like this:

oy R 1
smo@vie) = [ .af<r')V'(|x ) don
Ob'r

- Z V(3)V' (ﬁ) ds, (2.16)

S/

where V' means that the gradient is applied on the primed variable: 7’ or 5'. The
potential V' should be evaluated on the surfaces S; but, if & approaches the point 5 on a
surface S, the k™ surface integral becomes singular in 2.16.
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Consider now Fj(Z) the integral on the smooth surface Sj in 2.16,

=/

=\ =1\ ! ]‘ >
Fy (%) = S;V(s Y <7If—5”| s, (2.17)

then it follows from Vladimirov (1971, chap. 5, p. 302):

lim Fy,(Z) = 27V (3) + Fi(3) (2.18)

T—S

where T approaches the point § on the surface S; from the inside, so in the volume of
conductivity o .

With 2.18, the point Z can be placed on any surface S; and, with Z — 3, equation 2.16
becomes :

e NS 1
47I'O'k V(S) = /V()lb ]f(?"l)vl<m> d’UbT

—f:(ol —ot) [ V(=) B

s, 5= 57|
+2n(o, — o )V(3) (2.19)
and eventually
o, +oi _i/ 44,~,< 1 )
2 V(S) - 47r Volb,,, jf(,r )V |§>_ ,F),| dlub’/'
Ns (o7 — o) - 1 S
-y L7 sV 2.2

D ML )V<|§—§/|> i (2:20)

l l

This is an explicit relationship between the current sources j; and the surface poten-
tial V. The first term (on the right hand side of 2.20) is the direct contribution of j
to the potential V' and is similar to what would be obtained in an infinite homogeneous
conductor. The second term is the “correction” for the inhomogeneities in the volume, it
uses the potential on all the surfaces separating homogeneous volumes. It is important to
remember that the surfaces are assumed to be smooth, i.e. do not have sharp edges or
corners like in a cube. As V is present on both side of this integral equation, V' cannot be
directly and analytically evaluated (except for particular and highly symmetrical layouts)
and numerical methods are required to solve this integral equation.
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3.1 Approximation of the BEM equation

3.1.1 Original formulation

The previous chapter demonstrated how to express, equation 2.20, the forward problem
as an integral form of Maxwell’s equations:

Ng

VE) = Vi) = =3 L= V(g')ﬁ( ! ) AEds,  (3.)
27 ; a,;—i—a,j s |5 — 37|

29
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where V(') is the potential due to j7 in a conductor of infinite extent and homogeneous
conductivity (o, +o})/2:

Voo (3) = _;ﬂ/vjf(wﬁ('g_l - ) dv (3.2)

and

e the sum Efv 5 runs over all the surfaces separating volumes of homogeneous isotropic
conductivity.

e 0, and ol+ are the conductivity inside and outside' the surface Sj.
e 5 and 5’ are points on the surfaces Sy and S respectively.

e 71(58') is a unit vector normal to the surface S; at the point §’ and oriented from the
inside towards the outside of S;.

Solving equation 3.1 for V would provide us with a way to estimate the potential at
any location on any surface given any source j; in the brain volume.

3.1.2 General approach

The main task of solving the forward problem is to evaluate accurately the integrals on the
right hand side of equation 3.1. The volume integral over the continuous sources distri-
bution j; can be easily calculated by approximating 7 as a superposition of independent
point sources of known location and orientation. This reduces the volume integral into a
sum of independent contributions for each location and orientation of the sources.

On the other hand the surface integrals are more difficult to calculate: they run on
different and irregular surfaces and, moreover, they involve the potential V(§) that is
sought after. Therefore it will be necessary to express the surface integrals in terms of the
value of the unknown function V' at some discrete set of points on the surfaces, and to
tessellate the surfaces into sets of regular patches.

The most obvious approximation for the surfaces is to model each of them by a set of
plane triangles. With this surface tessellation, the surface integrals of 3.1 can be expressed
as a sum of integrals over triangles:

N
1

V(8) = Va(3) — 27T§: oL o mf:/(t) <

1= 10k+0k

) 7(5") dS' (3.3)

|5 5]

(1)

where the surface S; has been modelled by a set of IV, 0.

triangles Agy
The function V is rendered discrete by choosing on which nodal points V' is evaluated
and how the function V' behaves on each individual plane triangle. This would allow an
explicit calculation of the integrals over the triangles and equation 3.3 could eventually be
simplified into a sum of known or, at least, easily evaluated analytical functions.

'The notion of “inside” and “outside” depends on the orientation of the normal 7(5’) to the surface.
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Three different approximations of V' over a triangle are usually considered. First, one
could choose to evaluate V' at the centre of gravity of each triangle and consider this value
constant over the triangle: one value is thus obtained for each triangle. This approxi-
mation shall be referred as the “Centre of Gravity” (or “CoG”) method (Haméaldinen &
Sarvas, 1989; Meijs et al., 1989). The function V could also be evaluated on the vertices
of the triangles, this is generally called a “vertex” approximation (one value per vertex).
If the potential over the triangle is supposed to be constant and equal to the mean of
the potential at its vertices, this approximation will be called the “Constant Potential at
Vertices” (or “CPV”) method. On the other hand, if the potential is considered to be
varying linearly over the triangle, this approximation will be named the “Linear Potential
at Vertices” (or “LPV”) method (Schlitt et al., 1995).

The CoG and vertices (CPV and LPV) methods differ mainly on the choice of the nodal
points where the unknown potential function V' is calculated. It is important to note that
for a closed tessellated surface there are about twice as many triangles as vertices. The
number and arrangement of the triangles determine how well the true surface is spatially
approximated. The choice of the potential approximation method determines the number
of equations to be solved (one per triangle or vertex) and how well the true potential is
modelled over each triangle (constant or linear approximation).

3.1.3 Current source model

In equation 3.2, the source function j} () is a continuous function throughout the volume.
To be able to solve numerically the BEM equation 3.1, a discrete approximation of the
source function has to be adopted. The source function j(7') can be approximated by a
distribution of NN; independent dipole sources of known location 77 :

Z

7r(r) = 7¢(7") dv;i| 6(F — T 3.4a
e = S| 5] o= (3.42)
= Tr(75) (7 — %) (3.4b)

1=1

where 7% (7) = / J7(7") dv; is the summed activity in the volume v; around the location
v;

—

7 and 0(7) is the discrete Dirac delta function?.

Now with relation 3.4, equation 3.2 becomes:

Veld) = — 1 / jf(f'ﬁ'(| ! )dv (3.50)

27 (o), +05) Jv §—7
N;
1 s— 7! J
- (%) O(F' = 7) d 3.5b
2”(01; +0k) v |5 =73 i=1 f(n) (7= 73) dv ( )
N.
1 7 F_ 7
= = (= - 5 21 = d 35
271'(0; +Ul—c|—) pt f(rl) " |§>_ ,r—,>1|3 ('r 7’1) v ( C)

2§(7) equals 1 if # = G and 0 for 7 # G
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Scog
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S1

Figure 3.1: The Centre of Gravity (CoG) potential approximation: the potential V' over
the triangle is assumed to be constant and equal to the potential at the centre of gravity
Scog Of the triangle, V =V (5¢4).

and eventually we obtain:

1 §—7;
Vs (8) = 7 (T 3.6

3.1.4 Potential function model
The “Centre of Gravity” approximation

With this approximation, the unknown function V is calculated on nodal points located
at the centre of gravity of each triangle. The potential over the triangle is supposed to
be constant and equal to the potential at the centre of gravity V = V(5;44), as shown in
figure 3.1.

With this approximation of the potential, the integral over each triangle in 3.3 can be

simplified :
VA 1 ==/ r ] = 1 ol ,
/A%) V(S )V <|§»_ §,|> ’I’L(S ) s’ = V(Scog) /Agl) Vv <m> TL(S ) ds (37&)
= V(5 QM (3) (3.7b)

where Q(-™)(5) is the solid angle at § subtended by the triangle AW
" = 1 Lo
Qlm(z) = _ /A .\ VI<W> 7(5") dS’ (3.89)

§'-3 =0l !
_ /A(” ) s (3.8b)
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Figure 3.2: The Constant Potential at Vertices (CPV) potential approximation: The
potential V over the triangle is assumed to be constant and equal to the mean of the
potential at each vertex §, 5o and 33 of the triangle, V = (V(51) + V(52) + V (53)) /3.

This last integral depends only on the three vector differences between 5 (the “point
of view”) azgd the three vertices §7, §5 and §% (the “points of support”) determining the

triangle Ay,. There exists an explicit analytic formula to calculate Q4™ (3), it will be
presented in section 3.2.1.

The BEM equation 3.3 eventually becomes a “simple sum of known analytical func-

tions” :

S .
V(gcog,p) = Voo(gcog,p) +o- Z =+ V(gcog,m) Q(l’m)(gcog,p) (3.9)

where 5.99.m (reSp. Scogp) is the “centre of gravity” of the m'™ (resp. p™) triangle A%)

(resp. A,(,k)) of the I"™™ (resp. k') surface S; (resp. Si). The BEM problem has now the
form of a set of linear equations. Its solution is presented in section 3.3.

The “Constant Potential at Vertices” approximation

Here the potential is evaluated on the vertices of the triangles and the potential over each
triangle is assumed to be constant and equal to the mean of the potential at its vertices
V = (V(51) +V(52) + V(53)) /3, as shown in figure 3.2.

With this approximation of the potential, the integral over each triangle in 3.3 can be
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simplified like this:

/Aggg V(s ’W’(ﬁ) i(5") dS’
- PR /Am 61( : )ﬁ(§’) ds'  (3.10a)

- ) Qtm) () (3.10b)

where Q™) (3) is the solid angle at § subtended by the triangle ASQ, expressed like in
equation 3.8. An analytical formula to calculate it is provided in section 3.2.1.

The BEM equation 3.3 also becomes a “simple sum of known analytical functions” :

Ng _ o V(—»/ =/ =/
. . o, —0 1m) +V(Som) +VI(55,,)
V(S.) = VOO(S.) + % Z l_ l+ Z n n n

Qbm)(z) (3.11
=1 T +0k m=1 3 (S ) ( )

where §, is one of the three vertices of a triangle of the k™ surface S, and §;,,’ is the

i*™™ vertex of the m'™ triangle AS} of the I*® surface S;. The BEM problem is now also

expressed as a set of linear equations, and its solution is presented in section 3.3.

The “Linear Potential at Vertices” approximation

Here the potential is also evaluated on the vertices of the triangles but a better approxi-
mation of the potential over the triangles is used: The potential is assumed to be varying
linearly over each triangle, as shown in figure 3.3.

As only three values are needed to specify a linear function on a plane surface, the
value of the potential V' at the three vertices of the triangle can be used. Moreover this
ensures that the potential varies continuously from one triangle to the next which was not
the case with the two previous approximations.

As for the CPV approximation, the integral over each triangle in equation 3.3 can be
simplified into a weighted sum of the potential at the vertices:

>\ 1 =) !
/Aﬁfl) V(v <7|§_ §,|> 7(8") dS
= = (vEh) oME) + V(sh) o™ (E) + V(sE) o)) (3.12)

The three le’m)(g ) are also purely geometric quantities depending on the vector dif-

ferences between the “point of view” § and the vertices 57, of the triangle. An explicit

analytical formula to calculate the le’m)(g ) from § and 57, is presented in section 3.2.2.

With this approximation the BEM equation 3.3 also becomes a “simple sum of known
analytical functions” :

V(8s) = Voo (50)+ (3.13)

2o —0 oy olm) o 2y olm) o 2y o)z
ggt—a > (V(310) QL™ (50) + V(5h) Q8™ (50) + V(55,0) O™ (50))
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S1

Figure 3.3: The Linear Potential at Vertices (LPV) potential approximation: The poten-
tial V' over the triangle is assumed to be varying linearly between the potential calculated
at each vertex 51, 5 and §3 of the triangle, V = f(V(51), V(52), V(53)).

where 5, is one of the three vertices of a triangle of the k" surface Sy, and §;,," is the ¢*"
vertex of the m™ triangle AL of the I'™ surface S;. The BEM problem is also reduced to

a set of linear equations, and its solution is presented in section 3.3.

3.2 Solid angle calculation

3.2.1 Constant potential approximation

For both CoG and CPV approximations presented in section 3.1.4, the solid angle Q) (3)
subtended by a plane triangle Aﬁ) at some point § has to be calculated.

Without loss of generality, the observation point § can be placed at the origin ¢*.
The three vertices §1, §5 and §3 of the plane triangle are then specified by the vectors
U] = 81 — 0%, Uy = 8§ — 0" and U3 = §3 — 0™ relative to this origin 6%, as shown in
figure 3.4. The solid angle 2 can be analytically expressed with #;, U5 and 3 by the
formula taken from van Oosterom & Strackee (1983):

1 171(172 X 173)
tan ( =) = ————— —— = -
2 1| |2 03] + (0192)|T3] + (T103)|Ta| + (T2073)|t |

(3.14)



Chapter 3. Solving the BEM equation 36
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Figure 3.4: Solid angle supported by a plane triangle: The solid angle € supported at the
point 0™ by the plane triangle (grey shade) depends only on the three vectors vy, vo and
v3 and can be easily calculated by equation 3.14.

For the case where the point of view § is located on the same plane as the triangle
ASQ, e.g. when 3§ is at the centre of gravity of the triangle in the CoG approximation or
when § is at a vertex of the triangle in the CPV approximation, the solid angle Q(l’m)(é' )
is zero. The consequences of this feature are presented in section 3.2.3.

3.2.2 Linear potential approximation

For the LPV approximation presented in section 3.1.4, three geometric quantities ; (i =
1,2,3) have to be calculated for each triangle, under the assumption that the potential
V' varies linearly over this triangle. As for the previous section, the observation point &
can again be placed at the origin 6* without loss of generality. The three vertices 57, So
and §3 of the plane triangle are then specified by the vectors ¢} = §1 — 0%, U5 = §o — 0™
and v3 = 535 — 0™ relative to this origin 0™, as shown in figure 3.4. There also exists an
analytical formula for the ©; (de Munck, 1992; Schlitt et al., 1995) :

Q Zii Q+ B(7; —ﬁk)ﬁ) (3.15)

1
=L

where

e A is the surface of the plane triangle,
o Z; = U; x Uy with (4, j, k) a cyclic permutation of (1,2, 3),

e 7 is a unit vector normal to the triangle,
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e () is the solid angle subtended by the plane triangle at the origin as expressed in
formula 3.14,

e 3 = 7iv; is equal to the perpendicular distance from the origin to the triangle,

3
e Q is a vector defined by § = Z(’yj — 7)U; with
i=1

= L ([T Gl = 67 (3.16)
|7; — ] 7 AV

The €2; also satisfy the equality : 2 + Qo+ Q3 = Q. When the triangle Aﬁ) and the point
of view § are coplanar, for example when § is at one of the vertices of the triangle, {2 and
B are equal to zero, so {21 = {29 = Q3 = 0. This problem is tackled in section 3.2.3.

3.2.3 The auto-solid angle problem

An important property of solid angle concerns its integral over a single closed surface. We
know from equation 3.8 that the infinitesimal solid angle d€2’ subtended by the infinitesimal
surface dS’ around the point 5’ at the point of view 3 is expressed by :

5 -3

A (5,5") = i(5") ———— dS’ (3.17)

FT=5T

Then the integral of dQ'(3,5”) over a smooth closed surface is equal to:

0 outside
Qg(5) = / dV(5,8)=| 2n | ,for 3 on the surface. (3.18)
5 4 inside

The BEM equation 3.1 contains an integral of the form:

/S A (5, 5V (5) (3.19)

then this integral is converted into a discrete sum, by equation 3.9, 3.11 or 3.14, of the
form:

M
> Qo Vi (3.20)
m=1

where:

e m and n are indices of nodal points (possibly on different surfaces) where the po-
tential V is calculated.

e V,, is the potential at the point m.
e Q,m is the solid angle associated with the point m for the point of view n.

e M is the number of nodal points on the surface, i.e. the number of triangles for the
CoG approximation or the number of vertices for the CPV and LPV approximations.
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Figure 3.5: The auto-solid angle problem for the CoG approximation: The solid angle
subtended by the grey triangle from its centre of gravity (the black dot) is zero but the
total solid angle subtended by the rest of the surface (white triangles) is equal to 2.

It is therefore important that the Q,,, satisfy the relation 3.18:

M 0 outside
Q5 = Z Qumn =1 2n | ,for s on the surface. (3.21)
m=1 4 inside

In the case of § being outside or inside the surface, there is no problem to satisfy these
equalities: All the £2,,,, can be unambiguously calculated with equation 3.14 or 3.15. But
when § is on the surface itself then we meet the “auto-solid angle problem” : the solid
angle subtended by a triangle which contains the point of view is zero and the second
equality of relation 3.21 may not be satisfied automatically.

The auto-solid angle problem for the CoG approximation

In the CoG approximation, as the potential is evaluated on the “centre of gravity” of each
triangle, there will be only one null solid angle: €, = 0, as can be seen in figure 3.5.
Since the rest of the solid angle subtended by the closed surface is already 27, there is no
missing angle and the second equality of the relations 3.21 is satisfied.

Nevertheless, in reality the surface modelled by the triangle is not plane, and it should
thus support some non-zero solid angle. There is no way to improve the solution, but to
use a finer meshing of the surface.
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Figure 3.6: The auto-solid angle problem for the CPV and LPV approximations: The solid
angle supported by the “central” point and the adjacent grey triangles is zero, therefore
the total solid angle supported by the remaining white triangles is less than 27.

The auto-solid angle problem for the CPV approximation

In the “vertices” approximations (CPV and LPV), all the adjacent triangles (grey triangles
in figure 3.6) containing the “point of view” are supporting a null solid angle. The solid
angle €2, subtended by the rest of the surface will not be equal to 27 because the adjacent
triangles do not represent a flat surface.

M
Qupiss =21 — Qp =21 = Y Qpmy (3.22)

m=1

It is necessary to distribute this “missing solid angle” ,,,;ss over the triangles adjacent
to the “point of view”.

In the case of the CPV approximation, the easiest way to proceed is to share uniformly
this “missing solid angle” between the adjacent triangles and their vertices. The central
“point of view” should be attributed one third of the missing solid angle €2,,,ss/3, and
the other vertices should receive 2€,i5s/(3Ngqj) Where Nyg; is the number of triangles
adjacent to the central “point of view”.

There exists a more elaborate way to split the missing solid angle between the adja-
cent triangles. The approach is based on a local spherical approximation of the surface
surrounding the central vertex and is presented in the next section, in relation with the
LPV approximation.
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Figure 3.7: Adjacent triangles supporting a non-zero solid angle: The surface defined by
81, 89, ...,85 around §p support a non-zero solid angle. Each triangle, defined by a triplet
of vertices ([50515%], [S05253], - - -, [S08551]), supports a part of the missing solid angle which
in turn must be shared between its vertices. Each triangle can be locally approximated
by a portion of sphere.

The auto-solid angle problem for the LPV approximation

The case of the LPV approximation is more complicated because the potential V' is varying
linearly over each triangle. There are two main problems: how to divide up the missing
the solid angle €,,,;ss between the adjacent triangles and, within each of them, how to share
its part between its vertices. This is illustrated in figure 3.7. There exists an analytical
formula to solve these problems (Heller, 1990) but it requires that each triangle around
the point of view 53 be approximated by a portion of sphere of centre 7. and radius R. If
the surface is regular and smooth compared to the density of the mesh, this local spherical
approximation will hold as R will be much larger than the length of the edges of the
triangles.

Since three points do not determine a sphere, a fourth point must be chosen. A suitable
point would be the next adjacent vertex, e.g. the sphere that passes through the triplet
[505152] could be required to pass through 33 as well. A better and more anatomically
correct approximation can be obtained, if, at the tessellation stage, the centre of gravity
500 Of each triangle is projected perpendicular to the triangular plane onto the actual
surface of the volume é’ﬁ-og. Then a sphere can easily be fitted through these four points:
the three vertices defining the triangle and its projected centre of gravity, as shown in
figure 3.8. This approach was used in the implementation of the BEM solution.

Once the spheres have been fitted for 5p and its adjacent vertices $1, 82, ..., SN,
an approximate value for the solid angle subtended by each triplet [5,51355], [505253], - ..,
[805N,4;51] at 5y can be calculated. Using spherical coordinates for the vertices, as shown
in figure 3.9, the solid angle Q3,5 5, subtended at 5y by the spherical region bounded by
30, §1 and 8o, is approximated by :

Y1 + P

Q[§0§1§2] = 4 ¢12 (323)

where 1, and 19 are easily obtained and

. P12 |55 — 39
Fle _ 196 221 .24
S T O Rsin s (3.24)
with .

Sy =7, + [Sin(@bl — ¢2)(§0 — Fc) -+ sin ¢2(§1 — Fc)] (3.25)

sin ¢1
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Figure 3.8: Spherical approximation of an adjacent plane triangle: The triplet of vertices
[505152] and the projection sﬁé)g of the centre of gravity 35,4 of the triangle on the actual
surface determine a sphere, centre 7. and radius R, that approximates the actual surface.

After calculation of the solid angle for all the other triplets and summation, the total
solid angle Qg, supported by 51, 53, ..., §n,,, at 5o is approximated by:

ng = Q[§0~1 5] -+ 9[50*2_'3} + ...+ Q[gogNadjgl] (326)

The fraction of missing solid angle €,,iss to be assigned to each triangle, e.g., [5(5185], is
obtained by :
Q[go §159]

Note that, even though approximations are made in these calculations, since they only
involve ratios, the total solid angle subtended by the region around sy will sum to ;5.
and the total solid angle subtended by the entire surface at 5y will be exactly 27. For
the CPV approximation, the portion f(z s, s,)2miss of missing solid angle is simply equally
distributed between the three vertices of the triangle. For the LPV approximation, it is

necessary to further share this portion of missing solid angle between the vertices of the
adjacent triangles.

Assuming that 11, 99 and ¢ are small and that the potential V' varies linearly with
the distance on the sphere, Heller (1990) showed that it is possible to share the solid angle
f1505152)2miss between the three vertices 5y, 51 and 8 such that:

Qs (505155) T sy [505155] T Lo [505155] = Sl505155] s (3.28)
where
¢12 ( "/)% ¢% Qmiss
Qs iomm] = —o | T+ Topp — L — =2 (3.29a)
50,[505152] 48 o m ng
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Te

Figure 3.9: Autosolid angle approximation: The triangle defined by the triplet [5(5735]
is approximated by a portion of a sphere. The solid angle subtended at 53 by the curved
surface (bold line) can be calculated using the spherical coordinates of 37 and 39 : 1)1, 19
and ¢12.
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Figure 3.10: Simplified realistic head model: Three concentric volumes of homogeneous
conductivity, brain (o, ), skull (o) and scalp (o), separated by the three surfaces Sy,
Sy and S3, are used as head model.

¢ AR

Q§1,[§0§1§2] = 4_182 3¢1+2¢2+¢—? % (3.29b)
0
¢ Y1\ Qi

Q5 50515 = 4—182 2¢1+3¢2+¢—; o (3.29¢)
E)

These approximations for the CPV and LPV auto-solid angle were employed in the im-
plementation of the BEM solution.

3.3 Matrix form of the BEM equation

3.3.1 Simple realistic head model

For the simplified head model, three concentric volumes of homogeneous conductivity are
considered: the brain, skull and scalp volumes, of respective conductivity oy, os and
0sc, as depicted in figure 3.10. The three interfaces: “brain-skull”, “skull-scalp” and
“scalp-air” separating the three volumes are numbered respectively 1, 2 and 3. With this
numbering convention, the conductivity inside and outside each surface is defined by :

01 = O
ai" = 09 = Og
+ ul (3.30)
0-2 - 03 - Osc
of = 0

3.3.2 Matrix form

With the discrete approximation of the source term (equation 3.6) and the approximation
of the boundary element equation: CoG approximation (equation 3.9), CPV approxima-
tion (equation 3.11) or LPV approximation (equation 3.14) adopted in section 3.2, the
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BEM problem can be expressed under a matrix form:

vy Bi1 B2 Bis Vi G
AP = Bys1 Bos Bos Vo + G2 [_]] (331)
V3 B3 Bj32 Bas V3 G3

or, in a reduced version,

v=Bv+Gj (3.32)

where:

e vi, a Ny, x 1 vector, contains the value of the potential at the N,, nodal points of
surface S : centre of gravity of each triangle for the CoG approximation or vertices
of the triangles for the CPV and LPV approximations.

e By, a N,, x N,, matrix, represents the influence of the potential of surface S; on the
potential of surface Si. Its elements depend on the conductivity inside and outside
the surfaces S and S;, and on the solid angles used in the BEM approximations 3.9.
B is a N, x N, matrix with N, = N,, + N,, + N,

e j=[n"%" ... Jn']", a 3N; x 1 vector, is the source distribution vector where each

Jn = [Jnz Jny jn,2 )" is an orientation-free source vector.

e Gy, a N,, x 3N, matrix, is the free space potential matrix depending on the location
7y of the sources 7, the nodal points on surface S; and the conductivity inside and
outside surface Sy, (0, and o;7). G is a N, x 3N; matrix.

Self influence matrix B

For the CoG approximation, the element (p,q) of the matrix By, is calculated by :
1 (o, —0of

BIY = — (L% g 3.33

kl 2 \ o) + a,j e ( )

where

e p (resp. q) is the index of the nodal point on the surface Sy (resp. Sj).

th

e (1,4 is the solid angle at the centre of gravity of the p*™ triangle of S, subtended by

the ¢™ triangle of S;.

For the CPV approximation, the element (p,q) of the matrix By, is calculated by :
_ N,
1 (o, —0of 10
B(Py‘l) - l l Stpn 3.34
ki 2 \ o) + a,': zn: 3 ( )
where
e p (resp. q) is the index of the nodal point on the surface Sy (resp. S)).

e N, is the number of triangles comprising the ¢™ vertex.

e (), is the solid angle at the p™ vertex of the surface Sj, subtended by the n™ triangle
containing the ¢*"vertex) of 5;.
ining the ¢'" fS
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For the LPV approximation, the element (p,q) of the matrix By, is calculated by :
N,
1 (o] —0of !

B(I%‘D — l l 04 3.35

kt 2n \ o, +o} zn: pn (3.35)

where

e p (resp. q) is the index of the nodal point on the surface Sy (resp. S)).
e N, is the number of triangles comprising the ¢™ vertex.

e Q4 is the portion of solid angle attributed to the ¢'" vertex, and subtended by the

pn
n'" triangle (containing the ¢ vertex) of S; at the p™ vertex of the surface Sy.

Note that the correction for the auto-solid angle problem can only be performed af-
ter calculating all the solid angles relative to one nodal point because the missing solid
angle 2,55 is estimated by equation 3.22. When 2,55 is calculated, then the procedure
presented in section 3.2.3 can easily be applied for the CPV and LPV approximations.

Free potential matrix Gy

The elements (p,3q — 2), (p,3q — 1) and (p, 3q) of the matrix G can be calculated with:

— =\t
G_(p73q_2) G(p73q_1) G_(p73q) — (SP — Tl]) 336
[ ’ g ’ } 21 (0 +0)5p — 7l (330

where

e 5, is the p*™ nodal point of the surface Sk.

th

e 7y is the location of the ¢™ current source jj.

Interpretation

The N, x N, matrix B can be interpreted as a “self influence” matrix: the potential at
any nodal point on any surface is influenced by the potential at all the other nodal points
on all the surfaces. The N, x 3N; matrix G is, on the contrary, the “direct influence”
matrix : in free space, the potential at any nodal point on any surface depends only on the
source distribution j. The matrices B and G can be calculated separately and they depend
solely on the geometry of the problem and the conductivity adopted for each volume. Any
change in the geometry or the conductivity implies the recalculation of these matrices.

The number and placement of triangles determines how well the true surface is approx-
imated by the set of plane triangles. The choice of the potential approximation on each
triangle determines how well the real potential is approximated but also how the matrices
B and G are calculated and therefore the number of equations to be solved. For a tessel-
lated closed surface there are about twice as many triangles than vertices. Thus with the
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same head model, there will be twice as many equations to solve if the CoG approximation
is used than with the CPV or LPV approximation. The LPV approximation is also the
only one that ensures a continuous variation of the electric potential from one triangle to
the next on the surfaces.

3.4 Solving the matrix BEM equation

The solution of the forward problem consists now in establishing a linear relationship
between the source distribution j and the potential on the surfaces v (or at least on the
scalp v3) of the form:

v=Lj (3.37)

An obvious solution of equation 3.32 would be to simply solve the system of equations:
(In, —-B)v=G] (3.38)

by inverting the matrix (Iy, — B). However we are dealing here with a problem of electric
potential and a potential function can only be measured relative to some reference point,
i.e. calculated to within a constant. The systems of equations 3.38 is therefore rank
deficient and the matrix (Iy, — B) cannot be inverted, as explained below.

As vy, = v and vy, = v+ c 1y, (with ¢ # 0) must both satisfy 3.32 and 3.38, it follows:

(V+C].M) = B(V+C]-M,)+Gj, C#O} = C]'Nv_BC]-M,; C#O
= B]-Nv:]-Nv

The matrix (Iy, — B) has a null eigenvalue associated with the eigenvector 1y , i.e B has
a unit eigenvalue associated with the eigenvector 1y,. The only way to solve 3.38 is to
use a “deflation technique” (Lynn & Timlake, 1968a,b; Chan, 1984).

3.4.1 Deflation technique

By assuming that the unit eigenvalue of B is simple, it can easily be shown that any other
solution will only differ by an additive constant, that is, a scalar multiple of 1y5,. Let p
be any vector such that 1}{,” p = 1 and suppose that we seek the solution of 3.32 such that
p'!v = 0. Then looking for this particular solution, equation 3.32 becomes :

v=B-1yp)v+Gj (3.39)

Under the assumption that p’ v = 0, the matrix C = (B — 1y, p') is a deflation of B and
has no unit eigenvalue, so that (Iy, — C) ! = (Iy, — B — 1y, p’) ! exists. Equation 3.31
can be rewritten like

vy Ci1 Cip Cy3 Vi Gy
vy | =] Co1 Ca2 Cogs vo | + | Gao | []] (3.40)
V3 C31 Gz Cgz3 V3 G3
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and this system of equations can be solved by calculating :
v = (Iy, —C)"'Gj (3.41a)
= (Iy, -B—1y5p)"'Gj (3.41b)

where v will satisfy p’ v = 0.

Each vector v, is of size N, x 1, so if, for example, p is defined by :

— t
=[00...000...0pp...p] (3.42)
Noy Nuy Ny,

with p = 1/N,,, then p’v = 0 simply means that the mean of v3 is zero. Therefore
equation 3.41 provides us with the solution that is mean corrected over the scalp surface.

3.4.2 Partial solution for the scalp

The number of equations (IV,) to solve in 3.40 is rather large, but only the direct rela-
tionship between the source distribution j and the potential on the scalp vg is of interest
in the EEG problem. After some algebraic manipulations, equation 3.40 can be rewritten
like this:

Tivs = Thj (3.43)
where
I = —(Cs—1y,) (3.44)
—Cs [(Cn —Iy,,) — C12(Co2 — IN,,Z)_IC21] - [012(022 —1Iy,) 'Cas — 013]
—Cs [(022 —1Iy,) — C21(Cu1 — INvl)flcu] - [021(011 —1Iy, ) 'Cis — 023]
and
L, = Gj (3.45)

-1
+Cs1 [(Cn —1Iy, ) — C12(Ca2 — INUQ)_IC21] [012(022 Iy, ) 'Go — Gl]

-1
+Cs2 [(022 —1Iy,) — C21(Cu1 — INvl)flcu} [021(011 —1Iy,) 'GL - GQ}

In order to reduce the number of operations required to calculate I'y and I in 3.44 and
3.45, these relations can be expressed using some common “intermediate matrices” Y :

n = - ((033 - IM,3) 4+ Y5Ci3+ g 023) (3.46a)
I = G3+Y5G+YgGo (3.46b)
where

Tﬁ = ‘I‘4 ‘I‘2 - ‘rg (347&)

Ts = Y30 - Yy (3.47b)
-1

Y, = Cs (—Tz Co1 + (C11 — INvl)) (3.47¢)
-1

Y3 = Cs ( Y1 Ciz+ (Coo — INUZ)) (3.47d)

YTy = Cy (022 - INUZ) (3.47e)

T, = Cgu (Cn — IN,,I) (3.47f)
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By proceeding carefully, one has only to solve 4 systems of equations (3.47f, 3.47e, 3.47d
and 3.47c) to obtain I'y; and I'y. The matrices to invert are only of size N,, and N,,, thus
the calculation of I'y and I's require much less computational effort than inverting directly
C, which is of size N, = N,; + Ny, + N,

The explicit solution for all nodal points on the scalp surface may then be obtained
from 3.43 by calculating:

V3 = Fl_lrgj (348&)
= Lj (3.48b)

Where T'; is only of size N,,. It would of course be possible to obtain a relation such as
3.43 for the other two surfaces.

It is important to note that I'; depends only on the matrix C, i.e. on the geometry and
the conductivity of the volumes, but not on the source distribution j. By pre-calculating
and saving I‘fl, Y5 and Y, the lead field matrix L can be obtained very easily for any
source distribution, using equations 3.46b and 3.48.

3.4.3 Partial solution for the electrode sites

In general it is not necessary to calculate the potential V' over the entire scalp surface as,
in practical cases, EEG is recorded from a limited number of electrodes. Therefore the
lead field for the electrode sites should only be calculated :

V3el = Lelj (349)

In a realistic head model, the location of the electrodes is defined relative to the trian-
gular mesh of the scalp. As the electrodes have typically a diameter of a few millimetres,
the location of the electrodes can be approximated to the triangle directly underneath.
If the CoG approximation was used to model the potential over each triangle, the nodal
points for which the lead field should be calculated, are simply the centre of gravity of the
triangles under the electrodes. If the CPV or LPV approximation was used, the potential
is estimated at the vertices of each triangle. Therefore the lead field for the three vertices
of the electrode triangles has to be calculated, and should be combined afterwards to
provide a single lead field per electrode. If the electrodes are about the same size as the
triangles on the scalp, then a single mean can be used. But, if the electrodes are smaller
than the triangles, a linear interpolation between the vertices of the triangle should be
preferred.

A partial solution of equation 3.43 for a few nodal points is possible thanks to the
Frobenius-Schur formula that allows the partial calculation of the inverse of a matrix:
-1
M N | M'+MINF'PM~! -M~INF! (3.50)
P Q - -F'PM! F! :

here M and Q must be square.
W "] Mand F=Q — PM N must be invertible.
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Considering that the N, interesting (respectively, N, other) nodal points are the
last Ng; (respectively, first N,;) elements of vs: vy = [vg,mt vé’ )%, then equation 3.43 can
be rewritten like this:

= j (3.51)
P ‘ Q V3.el S
I“rl V3 T's
Viee | | MT+MINF'PM~' |-M"!NF! R ;
V3l -F 'PM! | F! S
;; r}rl f;
(3.52)

This partitioning of the vertices is not natural (as the electrodes are spread over the scalp
surface) but such ordering may be easily obtained by adequately permuting the rows and
columns in I'y and T's.

As only the bottom part of equation 3.52 is of interest, the lead field for the electrode
sites can be obtained from the submatrices of 'y and I'y by :

Ly = [ _F'PM~! F! ] [ IS‘] (3.53)

and only the two matrices F and M have to be inverted. The number N, of electrode
sites being much smaller than the number of nodal points on the scalp surface N,,, the
time spent to calculate F~! is negligible compared to M™!.

By using the simplified expression 3.46b for I's, equation 3.53 becomes:

L, = [ ~F'PM! F! ](T5 G+ Y6Gy + Gs) (3.54a)
= 5,G+5,Gy+E3G3 (3.54b)
where
2 = [ ~F'PM! F! ] s (3.55a)
2, = [—F—lPM—1 F—l] o' (3.55b)
=2, = [ _F'PM~! F! ] (3.55¢)

The three matrices 21, E9 and E3 depend only on the geometry and conductivity of
the head model. If they are pre-calculated (and saved), the lead field L,; can be rapidly
calculated for any source distribution j using equation 3.54. This is of particular interest
if the location of the dipoles has to be modified, for example, if a denser mesh of dipoles
is required in a linear distributed solution, or if an iterative procedure is used to optimise
the location of the ECDs in a ECD-based solution.
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4.1 Model for validation

The only way to validate the BEM solution, which is a numerical approximate solution
of Maxwell’s equations, is to compare it with an exact analytical solution. As previously
noted an analytical solution of equation 2.7 can only be calculated for particular geometries
and conductivity layouts. One such model is the “three sphere shell” model, consisting of
three concentric spheres of homogeneous and isotropic conductivity. The explicit analytical
solution can be obtained by the formula presented in appendix B.

To render the three sphere shell model more realistic, i.e. more like a real head,
the three radii and conductivity constants were chosen such that: The “brain” is an
homogeneous sphere of radius 71 = 0.8 and conductivity o; = 1, the “skull” is a thin
layer volume (between radii 7 = 0.8 and ry = 0.9) of poor conductivity oo = 0.01 (100
times smaller than the conductivity of the “brain” and “scalp” volumes), and the “scalp”
is the outer layer volume (between radii 7o = 0.9 and r3 = 1.0) with the same conductivity
as the “brain” volume (o3 = 1). The three sphere shell model is pictured in figure 4.1.
The analytical solution Ly, of the forward problem for the three sphere shell model was
calculated for a fixed set of dipoles. Within the brain volume, dipoles oriented according
to the three main axes (€, €, and €,) were spread on a uniform three-dimensional grid
at 2983 locations, providing with 8949 independent current sources of various orientation
and eccentricity.

50
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scalp

Figure 4.1: The “three sphere shell” model is defined for the “brain”, “skull” and “scalp”
volumes by the constants: radii ry = .8, ro = .9 and r3 = 1.0, and conductivity o1 = 1,
o9 = 0.01 and o3 = 1.

Table 4.1: Number of triangles, vertices and mean length of the edges of the triangles on
the three tessellated surfaces of radius 71 = 0.8, ro = 0.9 and r3 = 1.0.

number of mean length of an edge
triangles | vertices || on S; ‘ on Sy ‘ on Ss3
640 322 0.1731 | 0.1948 | 0.2164
1210 607 0.1263 | 0.1420 | 0.1578

2560 1282 0.0870 | 0.0978 | 0.1087

In order to calculate the lead fields Ly, with the BEM, the three surfaces used in
the spherical head model were tessellated into triangles. As stated in section 3.1.2, for
the same tessellation, the CoG potential approximation requires twice as many equations
as for the CPV and LPV approximations. Three levels of tessellation were used for the
simulations: the number of triangles, vertices and the mean length of the triangle edges on
the three surfaces (at radius ry = 0.8, 79 = 0.9 and 73 = 1.0) are summarised in table 4.1.

Two BEM solutions for the CoG method were calculated with the first two densities
(640 and 1210 triangles) while the last two densities (607 and 1282 vertices) were used to
compute the solutions with the CPV and LPV methods. With these choices of densities,
solutions requiring approximately the same computational load (about 5 times 600 or 1200
linear equations to solve, as it can be noticed in equations 3.46 to 3.48) could be compared
objectively. The BEM and analytical solutions were calculated for all the nodal points on
the “scalp” surface (centre of gravity of the triangles or vertices of the mesh) and for the
whole dipole set.
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4.2 Validation of BEM

With this choice of parameters the influence on the accuracy of the BEM solution of the
density of the tessellation and the approximation used to model the potential on each
triangle (CoG, CPV or LPV) could be assessed. Two criteria (Meijs et al., 1989) were
employed to validate the BEM solutions:

e the Relative Difference Measure (RDM):

N _ )2
RDM — \l 21 ('Uana,z Unum,z) (41)

ZZN vgna,i
e the Magnification factor (MAG):

N 2
MAG = Li Ynumsi (4.2)

N 2
Zz’ vana,i

where vana; (resp. vpum,) is the potential at the 7™ nodal point of the scalp surface,
calculated analytically (resp. numerically with the BEM). The RDM measures the level of
error in the BEM solution compared to the exact analytical solution. It should be as small
as possible. The MAG factor measures the relative power of the potential distribution on
the scalp between the BEM and analytical solution. It should be equal to 1, but a MAG
factor different from 1 is alright as long as it remains constant for all the dipoles.

4.2.1 Simple model

The RDM and MAG were calculated for all the dipole locations and orientations. The
results obtained for the CoG, CPV and LPV methods with (about) 600 and 1200 nodal
points are summarised in figure 4.2, the mean RDM and MAG is plotted versus the
eccentricity of the dipoles.

For the three approximations, the increase in nodal points per surface (from about
600 to 1200) showed a clear improvement in the accuracy of the solution, more triangles
ensure a better model. In general the level of error remained stable for sources with small
eccentricity but, when the distance between the dipole and the surface is similar to the
length of the triangle edges modelling the brain surface (as indicated in table 4.1), the
error suddenly increases dramatically. In all cases, the CPV method had the largest error
and seemed to be the less efficient solution.

For deep sources, the CoG method gives better results than the LPV method but
for shallow sources CoG errors increased much more than LPV error. The potential
distribution on the surfaces cannot be approximated accurately any more because the
triangles are proportionaly too large compared to the rapid variation of the potential on
the surfaces. A linear approximation (LPV method) is still more accurate than a constant
approximation (CoG method) and there are more triangles to model the surface (thus the
triangles are smaller) for the LPV approximation than for the CoG approximation.
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Figure 4.2: Mean Relative Difference Measure (RDM), left, and mean Magnification factor
(MAG), right, versus the eccentricity of the dipoles: The three potential approximations,
CoG, CPV and LPV, are compared for two levels of computational load, about 600 or
1200 nodal points per surface.



Chapter 4. Validation and application of the BEM solution 54

4.2.2 Refined model

Because of the low conductivity of the skull volume (100 times smaller than the brain and
the scalp volumes), the potential distribution on the brain surface is mostly dictated by
the underneath sources but, as the sources can be close to the brain surface, the error
committed at that level can be large. For computational reasons, the number of triangles
on each surface (dictating the number of equations to solve) is limited and cannot be
increased indefinitely to reduce the numerical errors of the BEM solutions. Nonetheless,
as the brain surface is closer to the sources than to the 2 other surfaces, a refined tes-
sellation of the brain surface was used to further improve the BEM solution: While the
potential distribution was calculated on (about) 600 or 1200 nodal points for the skull and
scalp surfaces, (about) 1200 or 2400 nodal points were used for the brain surface. The
results obtained with these “refined 600 (or 1200) nodes models” for the CoG and LPV
approximations are presented in figure 4.3.

The finer tessellation of the brain surface reduced significantly the RDM. For the CoG
approximation, the refined 600 nodes model gives results almost as good as the non-refined
1200 nodes model and the error for eccentric sources is greatly reduced with the refined
1200 nodes model. For the LPV approximation, the refined 600 nodes model is even better
than the non-refined 1200 nodes model. With the refined 1200 nodes model, the MAG
factor for both CoG and LPV approximations is closer to 1 and more stable through all
the eccentricities. The refined and non-refined 1200 nodes model for the CoG and LPV
approximations are compared in figure 4.4.

For the refined head model, both CoG and LPV approximations have very similar
degrees of error. The RDM still increased for shallow sources but much less than that of
any other model and/or approximation tested. The MAG factor was very close to 1 and
almost constant for all eccentricities.

4.3 Conclusion

From the results obtained in the previous section, a few conclusions can be drawn. Obvi-
ously the tessellation of the surfaces should be as dense as possible, within the limits of a
realistic computational load. For example, to divide, on average, by two the length of the
triangle edges, it is necessary to multiply the number of triangles (and vertices) by four,
therefore increasing the computational load by a factor 64! As shown in section 4.2.2, it
is usually sufficient to increase the number of vertices on the brain surface to achieve a
significant improvement of the solution accuracy.

The CPV approximation of potential over the triangles has proved to be the less efficient
approximation and should not be used. On the contrary the CoG and LPV methods have
both similar performance better than the CPV; nevertheless the LPV should be preferred
to the CoG for realistic head model for three reasons: 1. There are about twice as many
triangles than vertices on a closed tessellated surface, the LPV approximation allows a
finer model of the head geometry for the same computational load, i.e. the same number
of nodal points where the potential is evaluated. 2. The LPV approximation models the
potential continuously on the surfaces, while there are “potential steps” from one triangle
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Figure 4.3: Mean RDM (left) and mean MAG (right) versus the eccentricity of the dipoles
for the CoG (top) and LPV (bottom) approximations. Four head models are compared :
a non-refined model with 600 (or 1200) nodal points on each surface, and a refined model

with 1200 (or 2400) nodal points on the brain surface and only 600 (or 1200) for the other
2 surfaces.
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Figure 4.4: Comparison between the CoG and LPV approximations with a refined and

non-refined 1200 nodes head model: Mean RDM, left, and mean MAG, right, versus the
eccentricity of the dipoles.
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Table 4.2: Number of triangles, vertices and mean length of the edges of the triangles on
the three tessellated surfaces in the realistic head model.

Number Number | mean length of
of triangles | of vertices | an edge [mm)]
brain 4559 9114 4.6270
skull 2015 4026 7.6932
scalp 2011 4018 8.9209

to the next when the CoG or CPV approximations are employed. 3. In a realistic head
model based on a structural MR image of a patient’s head, the surface will not be regular
and, as the BEM formulation presented in this work is based on the assumption that the
surfaces are smooth, a denser mesh, i.e. the LPV method, should be preferred.

4.4 Application to a realistic head model

In order to use the BEM solution, it is necessary to first establish the head model. The MR
image used in this work to build the realistic head model was the template T1 weighted
MR image of the SPM99 software package (Wellcome Department of Cognitive Neurol-
ogy, 1999). This MRI is in the standardised Talairach stereotaxic space of Talairach &
Tournoux (1988) and contains 181 x 217 x 182 voxels of size 1 x 1 x 1 mm?. The image was
segmented with the segmentation function of the SPM99 software package (Ashburner &
Friston, 1997; Ashburner, 2000; Wellcome Department of Cognitive Neurology, 1999) to
generate the outer surfaces of the three main volumes: brain, skull and scalp.

The inner structure of the head is very complicated and almost impossible to model
under the eyes’ level because of the various cavities and tissues encountered. Fortunately,
on a T1 weighted MRI, the brain and scalp surfaces are still readily identifiable. Therefore
the lower part of the skull surface was obtained by inflating the brain surface. A few
transverse slices with the contour of the brain, skull and scalp volumes are presented in
figure 4.5. The surfaces were then tessellated into sets of regular triangles. The number of
vertices and triangles and the average length of a triangle’s edge are summarised in table
4.2 and the three surfaces are displayed in figure 4.6.

With the head model described, the lead field matrix L was calculated with the BEM
(LPV approximation) for a set of 61 approximately equidistant electrodes, shown on figure
4.7, and 12300 source locations arranged within the brain volume on a regular three-
dimensional grid (inter-dipole distance of 4mm). The location and orientation of the
dipoles will be defined in section 5.2.1. If the orientation and the amplitude of the sources
is left free, three dipoles oriented according to the main axes are assumed at each location
and the lead field matrix Ly obtained is of size 61 x 36900. Otherwise, if the orientation
of the sources is fixed, only the amplitude is left free and the lead field L is a 61 x 12300
matrix.
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77mm

47mm

17mm

77mm

Figure 4.5: Transverse slices of a MR image with the contour of the brain, skull and
scalp volumes, at a height of -43mm, -13mm, 17mm, 47mm and 77mm in Talairach space
coordinates.
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Figure 4.6: Tessellated surface of the brain (top left), the skull (top right) and the scalp

(bottom left), and an open view of the three concentric volumes (bottom right).
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Figure 4.7: Realistic rendering of the scalp surface with the location of the approximately
equidistant 61 electrodes.
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5.1 General approach

In the absence of any a priori information, the sources of the EEG signal can be modelled
by a fixed, uniform, three-dimensional distribution of current dipoles throughout the entire
brain volume. Each current dipole represents the coherent electric activity of the brain over
a small cubic volume. Three strong assumptions, based on neuroanatomy, are made about
these dipoles: they are located in the the grey matter, their orientation is perpendicular
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to the cortical sheet and they are spatially coherent. These constraints are implemented
operationally using information extracted from the subject’s structural MRI (see section
5.2).

For evoked response EEG (ERP EEG), the data recorded extend over some period of
time. Recordings start typically from a few tens to a few hundred milliseconds before the
triggering stimulus and last up to a few seconds after the stimulus. The brain activity
evoked by the stimulus is thus usually limited to some window of activity. The activity
recorded outside this window of activity is basically composed of noise and background
activity, i.e. activity that is not elicited by the stimulus. It is therefore useful to estimate
the variance-covariance matrix of the recorded noise at the electrode sites. Because of the
high sampling rate of EEG, typically of the order of the millisecond, there exists some
temporal coherence in the data: the activity at time ¢ + 1 cannot be completely different
from the activity at time ¢ or t4+2. These three assumptions about the temporal behaviour
of the EEG data (window of activity, noise covariance matrix and temporal coherence)
are used to further constraints the solution of the inverse problem.

By fixing the orientation of each dipole, the source localisation problem is reduced
from a vectorial problem, where both the orientation and the amplitude of the dipoles are
unknown, to a scalar problem, where only the amplitudes of the dipoles are unknown. For
instantaneous data, the distributed source localisation problem can be stated as:

v+e=Lj (5.1)

where

e v, the electric potential at the electrodes, is a vector of size N, x 1,

e ¢, the additive noise component, is a vector of size N, x 1,

e j, the (unknown) amplitude of each current dipole, is a vector of size N x 1,

e L, the lead field linking the current sources to the electric potential, is a matrix of

size N, x N;.

and the orientation of the current dipoles is embodied in the lead field matrix L, so that
each element of the vector j represents only the amplitude of each dipole.

If non-instantaneous data, i.e. a time series of EEG recordings, are considered, the
distributed source localisation problem can be stated as:

V+E=LJ (5.2)

where

e V, the electric potential at the electrodes over time, is a matrix of size N, X N,
e £, the additive noise component over time, is a matrix of size N, x N,

e J, the (unknown) amplitude of each current dipole over time, is a matrix of size
Nj x N,
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e L. the lead field linking the current sources to the electric potential, is a matrix of
size N, X Nj.

Having fixed the orientation of the dipoles, the two other anatomical assumptions
described above, spatial smoothness and location within the grey matter, are used to
establish a spatial basis set that models the source distribution (see section 5.3.1). The two
anatomical priors enter as constraints on the covariance structure of the source distribution
and motivate the selection of the basis set. This set is calculated in a way that maximises
the mutual information between the original (and full) source distribution space and the
reduced solution space spanned by the basis set.

The inverse of the variance-covariance matrix of the noise is used to whiten the noise
at the electrodes, giving more importance to electrodes with small noise variance, and to
take into account the covariance between them. Similarly to the anatomical priors, the
two other temporal assumptions, window of activity and temporal coherence, are used to
establish a temporal basis function set that models the time course of the activity of the
sources (see section 5.3.2). This set is motivated and calculated in a similar way to the
spatial basis functions.

If other prior knowledge about the location of electric activity is available (e.g. from a
functional MRI activation study), it may also help to solve the source localisation problem.
This information can be regarded as a soft or probabilistic constraint (compared to the
anatomical priors used to determine the spatial basis function set) and therefore enters
during the second step of the method, i.e. when the solution (constrained by the basis
functions) is actually sought by a weighted minimum L2-norm approach (see section 5.4).

5.2 Extracting the constraints

5.2.1 Grey matter density

First the MR brain image is segmented into its principal partitions: grey matter, white
matter and cerebro-spinal fluid (Ashburner & Friston, 1997; Ashburner, 2000). A grey
matter density coefficient is then determined from the smoothed grey matter image at
each dipole location. The coefficient varies in value from 0, zero probability that the small
cubic volume (i.e. voxel) surrounding the dipole is in grey matter, to 1, certainty that the
dipole is embedded in grey matter. These coefficients constitute the leading diagonal of
matrix Gy of size N; x Nj.

5.2.2 Dipole orientation

Here the orientation of the dipoles are fixed perpendicular to the interface between grey
and white matter pointing towards the outside of the brain. This orientation is obtained
from the three-dimensional gradient of the smoothed white matter volume: The gradient
vector field is oriented, at each location, in the direction of the largest variation of smoothed
white matter density. The smoothing is anisotropic using a diffusion process (Perona &
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Malik, 1990) :

=V (e(F) V(1)) (5.3)

where

e u(7,t) is the white matter density at location 7 for the virtual time instant ¢ of the
diffusion process (at time ¢ = 0, u(7,0) is the original unsmoothed white matter
volume),

e ¢(7), the anisotropic diffusion coefficient, is the grey matter density at location 7
(which remains constant throughout the diffusion process).

e the degree of smoothness is determined by the duration ¢ of the diffusion process

The definition of u(7,t) and ¢(7) ensures that white matter is smoothed in the direction
of the highest grey matter density. The gradient of the smoothed white matter image is
thus oriented perpendicular to the grey and white matter interface. This ensures that the
gradient of the smoothed white matter volume is appropriate for fixing the orientation of
each dipole.

5.2.3 Spatial coherence

The spatial coherence of the dipoles is modelled on the basis of their “connectivity”. The
N; x N; matrix D, represents this spatial coherence. As the dipoles are spread on a regular
three-dimensional grid, each dipole has at most 26 nearest neighbours. Not all neighbour
dipoles should be connected to the central one. Connectivity depends on brain anatomy,
e.g. dipoles located on opposite sides of a sulcus should not be connected.

The connectivity of a (central) dipole located at 7 with its nearest neighbours located

at 7+ dr is determined by a first order approximation to the white matter gradient ‘5%\/[

around the central dipole:

WM ., - WM , - WM

This estimated orientation is compared to the empirical white matter gradient at the
neighbouring dipole locations. If the discrepancy is too large, the dipoles are considered
disconnected, as for the case of dipoles on opposite sides of a sulcus. Otherwise the dipoles
are considered to be connected. This gives a sparse connectivity matrix A with element 1
for a connection or 0 otherwise. The spatial coherence can be derived from A in a variety
of ways. For example if we assume a simple spatial regressive model for the spread of
activity from one dipole to another, we obtain

D/D, = (Iy, —0cA) '(Iy, —cA) ™" (5.5)

Alternatively we can assume some decreasing function of path length (e.g. Gaussian),
where path length is the shortest path from one dipole to another based on A, to gener-
ate D;.
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5.2.4 Temporal coherence and window of activity

The temporal constraints are directly based on our knowledge of the EEG signal and do
not require an explicit extraction from the data. The window activity is modelled by the
leading diagonal matrix G; (size N, x N;). The i*" diagonal element of G, takes a value
between 0, zero probability of evoked activity at the ¢*® time instant, and 1, certainty of
evoked activity at the ¢** time instant. The temporal coherence is modelled by the matrix
D, of size N; x N;. The matrix Dy can be defined, for example, as a convolution matrix
with a Gaussian kernel of known width.

5.3 Basis function sets

5.3.1 Spatial basis functions

From section 5.1, the instantaneous noise free problem is expressed by :
v=Lj (5.6)
where j is unknown.

With the matrices G, grey matter density at the dipole locations, and Dy, spatial
coherence among the dipoles, a set of spatial basis functions can be generated that will
allow the source distribution to be spatially modelled with a substantial reduction in the
uncertainty of the solution. Such an approach has already been applied in the analysis of
fMRI activation studies by Kiebel et al. (2000). To reduce the size of the solution space
from N; to N, where N, < Nj, the sources j can be modelled as:

j=Bik, & Blj=k (5.7)

where By is a N; x N, matrix that maximises the mutual information (MI) (Jones, 1979)
between j and k; :

MI(j, ks) = H(j) + H(k) — H{j N k) = H(k) (5-8)

because H(j) = H(j N k) where H(j) represents the entropy of j. If ks is multinormal,
then:
H(k) o In(|Cie ) = 3 In(A) (5.9)

where Cy, = k; k! = B!jj'B, = B!C;B; is the variance-covariance matrix of k, and the ),
are Cy ’s eigenvalues. The expression to maximise is thus:

In|B/C;B,| = > In(\;) (5.10)
i
Therefore the matrix B, should comprise the eigenvectors of the variance-covariance matrix

C; = jj' corresponding to the highest eigenvalues ;.

Prior knowledge about j, embodied in Dy and Gg, can be included by noting:

C; = G/’D!D,G}/? (5.11)
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B; is obtained from the eigenvector solution of Gst/ 2D§DSG; 2 or equivalently by using
the singular value decomposition of Dy Gs1 /2,

U,S,W! = svd(D,G}/?) (5.12)

Columns of Wy corresponding to the highest singular values S;, are used to define By (see
section 6.1.1).

5.3.2 Temporal basis functions

From equation 5.2, the full noise free problem is:
V=LJ (5.13)

The spatial basis function set Bs obtained in section 5.3.1 can be used to reduce the size
of the problem in space:
V=LJ=LB,K; =1 K; (5.14)

where K; is a N, x N, matrix.

With the matrices Gy, window of activity, and Dy, temporal coherence, a set of temporal
basis functions can be generated that will model the time course of the sources activity.
To reduce the size of the “temporal space” from N; to N, the N; x N, source matrix J
can be modelled as:

J=K,B/=B;K;B/ & B/JB =K (5.15)

where Kg; is a N, X N, matrix and B; is a N; X N, matrix obtained, in a similar way to

B;, from the singular value decomposition of Dthl/ 2,

U,S W/ = svd(D,G,/?) (5.16)

The first columns of Wy, corresponding to the highest singular values S;, are used to
define B;.

5.4 Constrained minimum norm solution

5.4.1 Instantaneous problem

Given the spatial basis function set Bs, the instantaneous source localisation problem 5.1
can be reformulated as:
v+e=LB;k =1Lg k; (5.17)

To solve this reduced problem, a simple pseudo-inverse, e.g. Moore-Penrose pseudo-
inverse, could be applied on Lg, but because of the ill-posedness® of the source localisation
problem, this unconstrained solution is generally inadequate (Genger & Williamson, 1998).

!a linear problem is said to be “ill-posed” if any of the three following conditions is not satisfied: there
exists a solution, the solution is unique and it depends continuously on the data.
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A regularisation constraint on the solution can be applied to minimise some weighted
norm ||H j|| of the current density j = Bs ks or some weighted norm ||Hp, k;|| of the basis
functions coefficients k;. Assuming the noise € is characterised by the covariance ma-
trix cov(e) = Cg, the weighted minimum norm problem or “Tikhonov regularisation”
(Tikhonov & Arsenin, 1977) is expressed as:

§ = arg min{[[C¢*(Lj —ve)|* + 2 Hj| (5.18)

and, incorporating the basis function coefficients k;,

~

k = arg min {|| G¢ (L, k. —ve)|I” + 3* [ Hy, ko | (5.19)

where v; = v + € represents underlying signal with noise. Here A is a hyperparame-
ter that controls the influence of the constraints relative to minimising the error of the
fit. Its estimation will be discussed in section 5.5. There exists a direct mathematical
relation between the Moore-Penrose pseudo-inverse and the Tikhonov regularisation, see
appendix C.

The weighted minimum norm problem could also be expressed like a “Least Square”

problem :
l 0;1/21& ] Kk, — l 0;1/2"

AHg, 0 *

g
6; ] (5.20)

where €1 = Cgl/ %¢. This problem is solved by minimising, in a least square sense, the

norm of the residuals [} €]’ :
C;_1/2LBS . C;l/2v€
AHp, 0

2
(5.21)

k, = arg min
ks = arg mi
Equations 5.19 and 5.21 are obviously equivalent.

The solution of 5.19 should provide the best fit to the data while minimising the
constraint ||Hp, k||?. Such a solution has the form:

k=Tpv. = j=B,Tgv.=Tv, (5.22)
and
_ t -1 2 (1t ot et
Ts, = [LhC:'Is +) (HpHs )| LhCq (5.23a)
-1 -1 -1
= (HhHm) L [LBS (B Hs,) Th + ,\205] (5.23b)
using the matrix inversion Lemma.

There is an important and useful connection with Bayesian estimates of the sources
here, where under Gaussian assumptions, the conditional expectation or posterior mean
of the sources k; is given by:

t 1 U R |
E(klve) = [L4C:'Ls +Cy!| LhCelve (5.24a)

-1
= Cylh [Ia,Cilh +Ce| v (5.24b)
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where Cy is the prior spatial covariance of the sources. Comparing 5.24 with 5.23 provides
the motivation for choosing forms of Hp, such that:

Hp, x C, (5.25)

In the particular and theoretical case where the measurements are noise-free (or sup-
posedly so0), i.e v = v, the solution of 5.19 is obtained from 5.23b by taking the limit
A — 0 (Rao & Mitra, 1973), i.e. minimising the constraint |Hp, ks||* after fitting the
model perfectly :

Ta = (HyHa) L [Ln (HhHa) Lés]1 (5.26)

When noise free simulated data will be employed to assess the solutions developed (sections
7.2 and 7.3), these solutions will be based on equation 5.26 and it will not be necessary to
estimate A. In the other cases, where some noise is added in the simulated data (section
7.4), the solutions will be computed using equation 5.23 and A will have to be estimated
every time.

5.4.2 Non-instantaneous problem

For non-instantaneous data, the sources J can be modelled by the spatial and temporal
basis function sets By and By, such that the problem 5.2 can be reformulated as

V+&=LB;K,B/ (5.27)
which becomes

(V+&)B =LB,K,y, < Vg +& =1Lp Ky (5.28)
The weighted minimum norm can be expressed like this

_l’_

CEI/ZLBS K, — Cgl/2VBt
AHp, 0

£
gl ] (5.29)

with &1 = Cgl/ QSBt. This reduced problem can be solved for each temporal basis function
coefficient separately, i.e. each column of Kg; at a time using equations 5.22 and 5.23, see
appendix D for justification.

5.5 Hyperparameter )\ evaluation

The accuracy of the Tikhonov regularisation method, presented in section 5.4, depends
strongly on the choice of the hyperparameter A. The hyperparameter A balances the
confidence between the fitting of the model Cgl/ 2(LBS ks — v¢) and the priors on the
solution Hp, ks but, as A varies, the regularised solution ks , has properties that depend
on A. Therefore the choice of A is crucial. As a general rule, the degree of regularisation
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(M) should increase with the noise level of the data, i.e. the importance of the priors should
be increased relative to the model, but this rule is not sufficient by itself to explicitely
estimate A.

A convenient way to display and understand the properties of k; ) is to plot the
(weighted) norm of the regularised solution ||Hg, ks |/?, versus the norm of the resid-

ual vector ||C;-1/ 2(LBS ks ) — ve)||? for different values of A\. The curve obtained usually
has an L shape (in ordinary or double logarithmic scale), hence its name of “L-curve”. A
satisfactory A would be found close to the inflection of the plot (Hansen, 1992). But Engl
& Grever (1994) showed that hyperparameter choice strategies based on this plot alone,
e.g. on the corner of the L-curve, have the property of being independent of the norm
of the residuals ||CE1/ 2(LBS ks — v¢)|l. Another disadvantage of this L-curve approach is
that the solution must be calculated for a large number of values of A to find the proper

regularisation level.

Fortunately there may be other ways to simultaneously estimate the hyperparameter A
and its associated solution ks ) in an optimal way.

5.5.1 Maximum likelihood (ML) solution

Consider the linear stochastic model of the form
b=Ax+r (5.30)

where A, the model or design matrix, is of size m x mn; x, the unknown vector, is of size
n X 1; b, the data vector, and r, the residual or error vector, are of size m x 1 and C, the
covariance matrix of r = N(0, C), is of size m X m. The normal equations of this model
are:

(A'C'A)x = A'C™'b (5.31)

By solving the normal equations, the “Best Linear Unbiased Estimate” (BLUE) is ob-
tained :
x = (A'CT'A)"A!C'b (5.32)

where, for any matrix B, B~ denotes an arbitrary generalised inverse of B, i.e., any
solution to BB~B = B.

This is equivalent to maximising the following objective likelihood function (Patterson
& Thompson, 1971):
p(b|x) o |C|71/267%(b7Ax)tC*1(bfo) (5.33)

which is also equivalent to minimising the function
F(b;x) = —2log(p(b|x)) = log |C| + (b — Ax)'C™'(b — Ax) + const (5.34)

The variance-covariance matrix C is necessary to weight the observations b differently
according to their variance and to account for their covariance. There may be a model
for this matrix, depending on hyperparameters @ = [6; 6, ...], but its exact value is not
necessarily known a priori and needs to be estimated as well as x.



Chapter 5. Constrained minimum norm solution: Theory 71

5.5.2 Restricted maximum likelihood (ReML) solution

Assume that the variance-covariance matrix C is a function of the unknown hyperparam-
eters §;, C = C(0) and @ = [0; 6...]. There is a scheme that allows the simultaneous
estimation of x and C(6), that properly takes into account the loss of degrees of freedom
in the model incured from estimating x (Patterson & Thompson, 1971) when C(0) is
calculated.

Starting estimates are initially assigned to 8. With the current estimate 0, x is esti-
mated by maximising the first likelihood function 5.33. Then an updated estimate of 6 is
calculated from the current value x. The procedure is repeated until convergence of both
x and 6.

Harville (1974) showed that this iterative procedure maximises the following function
which has subsequently been named “Restricted Maximum Likelihood” (ReML) objective
function:

[A'A|

_ (b—Ax)!C(0)"1(b—Ax)
p(bfx.6) \/(2w)m—"|c<o)| AIC(6) TA| (5.35)

Maximising 5.35 is equivalent to minimising:

F(b;x,0) = —2log(p(blx,0)) (5.36)
log|A'C(0)"'A| +log|C(8)| + (b — Ax)'C(8) "' (b — Ax) + const

There exists a general iterative approach for estimating x and 8 but a linear parameterisa-

tion of C, i.e. C(0) =Y 6;G; where G; are n x n symmetric matrices whose elements are

known, leads to a much simpler and less computationally demanding approach (Harville,
1977).

5.5.3 Simple ReML solution

One such case of linear parameterisation of C involves a diagonal covariance matrix with
each element parameterised by only one element? of . With only two hyperparameters
0 = [0? 62], the matrices and vectors of 5.30 can be separated into two parts:

e

r 2
var (l r; ]) = l 91%)m1 053@ ] = C(9) (5.38)

with my, the number of rows in A; and by and mo, the number of rows in Ay and by
such that mq + mo = m.

X+

T ] (5.37)
ry

and

The iterative scheme involves assigning (non-zero) starting estimates for € and esti-
mating x with relation 5.32:

x = (07 2A A +0,°ALA,) 71 (072A by + 60,2 Alby) (5.39)

’because 01 and 0> will be modelling variances, and by notational convention, the elements of 6 are
squared. C will thus be linearly parameterised by 67 and 63, i.e. C(0) = >_ 0;G,.
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Updated values of the hyperparameters are then obtained from the residuals

r:l“]:b—A& (5.40)
ro

and take into account the loss of degrees of freedom resulting from the estimation of X :
p1 = trace (07 2A1A1 +0;2A5A) 107 2ALA,) (5.41a)
po = trace ((0{2A§A1 + 052A§A2)_10;2A§A2) =n—p (5.41b)

The new estimates of @ are:

~ I‘tI‘

62 = 11 5.42a
1 o ( )
~ I‘tI‘

62 = 22 5.42b
5 p—— ( )

The iterative procedure continues by using these new hyperparameter estimates to re-
estimate x, then from the updated %, a new set of 8. Eventually the algorithm converges
to a stable solution.

The hyperparameters 67 and 62 are the variance components of each subproblem. If
the algorithm is started with strictly positive values, then at no point can the values of 8
ever become negative and, in fact, will never reach zero. Obviously the algorithm should
not be started with zero or negative starting estimates.

5.5.4 Simple ReML solution in a non-instantaneous problem

Consider the case of the linear stochastic model 5.30 with non-instantaneous data, i.e. the
m X 1 data vector b (resp. residual vector r) is replaced by a m x ¢ matrix B (resp. R)
and the n x 1 vector x, by a n X ¢ matrix X:

A

A, | X

B=AX+R <& lBI]:l
B,

R
R; ] (5.43)

If the covariance matrix C of the residuals R still depends linearly on two hyperpa-
rameters @ = [#7 03] as in 5.38, then a similar iterative scheme can be applied to estimate
both X and . With starting estimates for 8, a first solution for X is calculated with
equation 5.39:

X = (072AL A +0;2ALA,) L (07%ALB) + 6;,%ALB,) (5.44)

The values of @ are then updated from the residuals:

R — lRl ] _ [1‘1,1 2 -« Tla | _g_AX (5.45)
R rg1 Irgo ... Tag4
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using relations similar to 5.42:

q
t
Z IS LSR

2 = =L 5.46a
! q (ml - pl) ( )
q
Z r%,irzi
3 = L 5.46b
2 q (m2 - pz) ( )

where p1 and po are calculated with equations 5.41, see appendix D for the justification.
The iterative procedure continues, as in section 5.5.3, by re-estimating X with these new
values of 8. The process is repeated until convergence of the values of X and 6

5.5.5 ReML and constrained minimum norm solution

Clearly equations 5.37 and 5.43 are similar to equations 5.20 and 5.29 with

A = C. g, (5.47a)
A, = Hg (5.47b)
x = ki (or X=Ky) (5.47¢)
b, = C;"/%, (orB;=Cz"*Vg) (5.47d)
b, = 0 (or By=0) (5.47¢)

By considering A as the ratio between the variance 62 of the residuals of the model

C;l/ 2(LBSkS — v¢) and the variance 3 of the weighted solution Hp, ks, then it is possible
to apply the ReML iterative procedure described in sections 5.5.3 and 5.5.4 to estimate
both k; and A = 6,/65 in

07y 0 c:V g - ol
0 951 IJ\G Hp, 0

The use of a constant variance % for the residuals of the model and 62 for the residuals
of the constraint is realistic. Indeed, the residuals of the model L, k; — v is premultiplied

2

k = arg min (5.48)

by C;l/ 2, the inverse of the square root of its covariance (or its best estimator at least),
therefore the residuals are “whitened” and the remaining variance can be approximated
by a scaled identity matrix 6? In,. Similarly, the matrix Hg, can be interpreted as the
inverse of the square root of the a priori covariance of the sources, as shown in equation
5.25, thus the variance of the weighted solution Hp ks can be modelled by 63 Iy;.
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6.1 Step 1: Estimating the spatio-temporal basis function
sets

In this section, the theoretical approach presented in sections 5.3.1 and 5.3.2 to extract
the spatial and temporal basis functions is applied to a realistic head model and recorded
free brain EEG activity (and measurement noise).

6.1.1 Spatial basis functions

The MR image used in section 4.4 to generate the realistic head model, was segmented
with the segmentation function of the SPM99 software package (Wellcome Department
of Cognitive Neurology, 1999), and the grey matter image was averaged over each dipole
cubic volume to provide the grey matter coefficient for the matrix Gs. The 12300 dipoles
noted in section 4.4 for which the lead field was calculated are the dipoles, from the original
full grid, located in voxels with a grey matter density greater than 0.4 (i.e. 40% of the
voxel was grey matter or the probability of all the voxel being grey matter was 0.4 or

74
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more). This density value ensured that each dipole represented the electric activity of a
small volume of the brain containing a sufficient amount of grey matter. Selecting this
subset of all potential dipoles represents a compromise between considering all the dipoles
and those that potentially contribute a substantial signal (i.e. it is pointless to retain
dipoles located in the white matter or the cerebro-spinal fluid). Using the BEM solution
described in chapter 3, the lead field matrix L between the 12300 dipole locations and the
61 electrode sites was calculated as decribed in section 4.4.

The following numerical approximation of equation 5.3 was used to smooth the white
matter anisotropically :

ué:,—]l,k) = ul(tiijf) + Aev dvu + ¢s dsu + g dpu + ay dwu + @z dpu + ca 6Au]€z',j,k) (6.1)

where c(; j ) is the grey matter density at voxel (4, j, k), u'éz k) is the white matter density
at voxel (4,7, k) and iteration ¢, and

Clit1,5,k) T Cigk)

ONU = Uiy k) — U(ijk) ON = 5 (6.2a)
Ot = U(i—1jk) — UGigk) S = c(i_l’j’k); k) (6.2b)
OpU = U(ijy1,k) — Uijk) OB = C(i’jﬂ’k); Elisgsk) (6.2¢)
WU = UG j—1,k) — Ujk) OV = c(i’j_l’k); CGi.gik) (6.2d)
Q= ) — U)W = c(i,j,k+1)2+ C(i,j,k) (6.2)
0AU = U(jjp—1) — U(ijk) CA= c(i’j’k_l);_ k) (6.2f)

To ensure that the smoothing process is stable, it is necessary to select A such that
0 < A < 1/8. An isotropic diffusion process, i.e. with C(i,j,k) = 1 everywhere, approximates
a Gaussian function of kernel ¢ = v/2\t. By choosing o to be equal to the inter-dipole
distance and taking A = 1/10, the number ¢ of iterations is specified to give the required
smoothing. Starting with u’, the segmented white matter volume, equation 6.1 was applied
iteratively until the desired smoothing was achieved. The gradient of the smoothed white
matter was then calculated and sampled at the location of the dipoles. The successive
steps of the MRI processing are summarised in figure 6.1.

Equation 5.4 was used to determine the connectivity of neighbouring dipoles. The
estimated orientation of neighbouring dipoles was compared with their real orientation
and if the angle between the orientations was greater than /2, the dipoles were considered
disconnected. Instead of using equation 5.5, a Gaussian function of path length was used.
This allowed to model spatial coherence more directly than in 5.5. The path length was
calculated as follows: For each pair of connected dipoles, a parabolic curve joining the
dipoles and fitting their orientation was calculated. The length of this curve was used as
“path-length”. The distance between two dipoles that were not directly connected was
obtained by looking for the shortest path (within an upper limit of 30mm) composed of
connected dipoles.

Two degrees of spatial coherence were studied by using two different Gaussians, o =
10mm, and ¢ = 5dmm. For each of the two D matrices obtained, the eigenvectors of



Chapter 6. Constrained minimum norm solution : Application 76

Smoothed WM
White matter + gradient

Original MRI

Original MRI Enlarged MRI + oriented dipoles

L X TR

Smoothed GM Es
Grey matter + dipole location ﬁ o j@i
o

Figure 6.1: Successive steps of MRI processing. The structural MR image is segmented
into the white and grey matter volumes. The dipoles are placed within the smoothed grey
matter volume and the gradient of the anisotropically smoothed white matter volume is
sampled at the dipole locations, providing a distribution of oriented dipoles
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Figure 6.2: Spectrum, on a logarithmic scale, of the normalised eigenvalues of the spatial
variance-covariance matrix C; = Gf/ 2D;tDSGS1 / 2, for the two different spatial coherences
considered: o5 = 10mm (left) and o5 = 5mm (right).

st/ QDjDS 51 /2 With normalised eigenvalues greater than unity were retained to form the
basis set B;. The ensuing spectrum of singular values is shown in figure 6.2.

The original solution space j of 12300 dimensions was reduced to a space ks of 621 and
1903 dimensions for the large (o0, = 10mm) and small (0; = 5mm) coherences respectively
(a reduction of about 95% and 85%). The dimension of the reduced space corresponds to
the number of orthonormal basis functions in By;. The solutions based on Tg, obtained
using equation (5.26), will be referred as the “Informed Basis Function” (IBF) solutions
of kernel 5mm (IBF5) or 10mm (IBF10).

6.1.2 Temporal basis functions

In order to assess the solutions with realistically noisy data, as described in section 7.4, free
brain activity was recorded on a volunteer. The 61 electrodes were distributed over the
scalp according to the head model adopted in section 4.4. The EEG background activity
(and noise) was sampled at 250 Hz over epochs of 2 seconds, thus containing N; = 500
time samples. Each epoch was bandpass filtered between 0.05 and 20 Hz by a third order
digital Chebychev filter (Rabiner & Gold, 1975). Eventually 150 epochs were averaged
to produce a realistic noise time series at each electrode site. The 61 x 500 matrix £
represents this additive noise.

The prestimulus period was chosen to last 400 ms from -400 ms to 0 ms (100 time
samples), thus the window of activity spreads from 0 ms to 1600 ms (400 time samples).
The rise and fall periods, 40 ms each, at the extremities of the window of activity were
modelled as the ascending and descending part of a Hanning window. The window of
activity, defining the diagonal of Gy, is shown on the left of figure 6.4. The temporal
coherence matrix D; was modelled by a Gaussian convolution matrix, the kernel of the
Gaussian function was oy = 16 ms wide (4 points) and is kept constant during the epoch.
The coherence around one time instant (600 ms) is shown on the right of figure 6.3. By
chosing kernels of different size during the epoch, it would be possible, for example, to
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Figure 6.3: Window of activity and temporal coherence used to define the temporal basis
functions: The assumed window of activity (left), i.e. the leading diagonal of matrix Gy,
spreads from 0 to 1600ms with the prestimulus interval starting at -400ms. The temporal
coherence at one time instant (right), here ¢ = 600 ms, is a Gaussian function with a
kernel of 16 ms.

allow higher frequencies at the beginning of the epoch than at the end of it.

As for the spatial basis function set B;, the eigenvectors of th/ 2DttDth1/ ? correspond-
ing to normalised eigenvalues greater than unity were retained to form the basis set B;.
The original 2 seconds epoch composed of 500 samples is reduced to 54 (orthogonal)
temporal basis functions as shown in figure 6.4

The covariance matrix Cg of the noise component € is assumed to be constant through-
out the whole epoch. Considering Cz = cov(€) gives the most efficient estimator before
projecting onto the temporal basis set B;. The most efficient estimator after projecting
would be cov(EB;) but this basis set is very suboptimal for estimating the error (which
determines efficiency). Therefore, the covariance matrix of the noise component was cal-
culated as Cg = cov(€).

6.2 Step 2: Minimum norm solution

6.2.1 Definition of the soft constraints

The (weighted) minimum norm solution depends on the specification of the constraints
Hg, that enter into equation 5.19. As noted in section 5.4, Hp, o 01;1/2. Because the
solution space has been reduced using the eigenvectors of Cj, the source prior covariance
matrix Cy, could simply be its eigenvalues Cl;l/ 2 = S; !, where S, is the leading diagonal
matrix of singular values from 5.12. This simple form for the constraints could be used
directly.

However, further “soft” priors on the covariance of the sources can be included by
specifying linearly separable components of the prior source covariance matrix, in addition
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Figure 6.4: Temporal basis function: From 500 time samples, the epoch is modelled by
only 54 (orthogonal) basis functions.

to the “hard” constraints used to determine the spatial basis set. Each of these covariance
components is controlled by its own hyperparameter. There are two additional constraints
considered here.

First, because superficial sources produce a stronger (and more focal) scalp electric
potential than deeper sources, shallow sources are “penalised” to ensure that sources are
more likely to influence the electric potential equally at the electrodes irrespective of
depth (Pascual-Marqui et al., 1994; Pascual-Marqui, 1999; Grave de Peralta Menendez &
Gonzalez Andino, 1998). This can be achieved by assuming deeper sources have a larger
variance than superficial sources. The depth’ is indexed by the norm of the source’s lead
field. Let the covariance component of this constraint be the diagonal matrix diag(L‘L)~".

Using this diagonal matrix is equivalent to normalising the column of the lead field matrix.

A second important constraint may be derived from fMRI indices of activation that
enter as the constraint a, a leading diagonal matrix with elements that reflect the prior
probability of whether the source is active or not (here we only allow values of 0, the
variance is left unchanged, or 1, the variance is increased according to the value of any
hyperparameter). Combining these components, we obtain the following general expres-
sion :

HpHp = (B/GB,)™ (6.3)
C; = B G/’DID,GY? + By diag(L'L) ' + Bz + .. . (6.4)

This formulation, in which the prior covariance is some linear combination of covariance
components (structural, depth and functional), is important because the hyperparameters
B can be estimated using iterative techniques such as the EM algorithm (Dempster et al.,
1977; Harville, 1976).
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In the present case, a slightly modified approach is followed and Cj is defined by :
2
C; = B G/’DI'D,G)/? + B, {diag(LtL)_l (Ty + 85 @) } (6.5)

separating clearly the “hard” constraints, used to define the basis functions, and the “soft”
constraints.

To illustrate the role of the hyperparameters, a range of fixed values was assumed
where 1 = 0, B2 = 1, and B3 = (B takes three values, 0, 1 and 4, corresponding to no,
weak and strong (fMRI) location priors. The ensuing solutions will be referred to as:
“without priors” (or “wp0”), “with weak priors” (or “wpl”) and “with strong priors” (or
“wp4”). This simplification can easily be interpreted as defining the weighting matrix H
that would be used to constraint the weighted norm of j, see section 5.4, by:

(H'H) ! = diag(L'L) ! (IM + B a)2 (6.6)

By taking 3 equal to 1 or 4, we are actually assuming that the variance o2 of the a priori
active location (defined by a) is 4 or 25 times larger than that for the other locations (if
the depth constraint was discounted).

6.2.2 Noise regularisation

The ReML iterative scheme to simultaneously estimate k; (or Kg;) and A = 6,/05 is
directly implemented as presented in sections 5.5.3, 5.5.4 and 5.5.5. The starting estimate
of @ is taken as @ = [1 1] in all cases. The stopping criteria of the iterative procedure is
based on the difference and relative difference between two successive estimates, A, and
An—1, of A. The algorithm is stopped if

A — An
fn ol <107 (6.7a)
An
or An— A < 1078 (6.7b)

6.3 Other common solutions

The IBF approach described here was compared in the simulations presented in chap-
ter 7 with two other commonly employed solutions: a Weighted Minimum Norm (WMN)
solution and a Maximum Smoothness (MS) solution.

6.3.1 Direct weighted minimum norm solution

The Weighted Minimum Norm solution (WMN solution) is simply the solution of the
problem formulated in equation 5.18 given by equations 5.22 and 5.23 or 5.26 where no
spatial basis functions are used, i.e. By = Iy, and so k; = j. In the version of the method
employed here, the orientation of the dipoles was fixed as with the IBF method, so that
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only the amplitude of the dipoles was unknown. The weighting matrix H was defined as
in equation 6.6 and depended (or not) on prior knowledge of the location of active sources.

For the simulations with noise-free data, three different solutions were calculated from
equation 5.26 with the same range of 3 : without priors (8 = 0), with weak priors (8 = 1)
or with strong priors (8 = 4). When data with realistic noise were employed, the WMN
solution was also calculated from equation 5.23 with the same range of 5. As for the IBF
solution, the hyperparameter A was estimated at the same time as the solution using the
ReML procedure described in sections 5.5 and 6.2.2.

6.3.2 Maximum smoothness solution

The Maximum Smoothness solution (MS solution) is also a particular case of equation 5.18.
The MS solution is thus calculated with the relations 5.22 and 5.23 or 5.26 where the
matrix B; is the identity matrix and so k; = j. As in the original LORETA software
(Pascual-Marqui et al., 1994; Pascual-Marqui, 1995, 1999), the orientation of the dipoles
was left free. Strength parameters were estimated for three independent and orthogonal
dipoles, oriented along the three main axes €;, €, and €, and of amplitude j;;, j,; and
Jz,i, at each source location i such that 7; = [jui Jyi Jzi]' and j=[7F 7% ... jf\,dip]t. A
single value j; for the amplitude of the electric activity at each source location 7 was then
obtained by calculating the norm of the resulting dipole j; = |7;| = / j§1 + jiz + j§1 The
source localisation problem is still stated as in equation 5.1: v+& = Ly j but the lead field
matrix Ly is now of size N, X 3N to accommodate for the free orientations of the dipoles.

The constraint matrix H is defined as a weighted three-dimensional Laplacian H =
MW. The weighting matrix W is a 3N; x 3N; leading diagonal matrix whose diagonal
elements are defined by w ® [1 1 1]* where

w=[(ly ®[111)) diag(L;Lf)]l/ ’ (6.8)

The 3N; x 3N; Laplacian matrix M is a regularised discrete three-dimensional second order
derivative operator defined as in (Pascual-Marqui, 1999) :

6
M= [(P®13) —13]\9} (6.92)
1 - -1
P = ;(Iy+ [dlag(Q 1]\9)] >Q (6.9b)
L it |7 — 7| =d
6 LTk l
@ { 0 , otherwise (6.9¢)

where d is the inter-grid-point distance, 4 mm here, and Qy; is the element (k,[) of the
matrix Q.

This method does not provide a way to include prior information. A solution for
(assumed) noise-free data was calculated using equation 5.26 and solutions for data with
realistic noise were obtained from equation 5.23. As for the IBF and WMN solutions, the
regularisation hyperparameter A\ was estimated at the same time as the solution using the
ReML procedure described in sections 5.5 and 6.2.2. Though, due to the definition of the
constraint matrix H, other starting estimates [1 10°] were chosen for 6.
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In this chapter, simulated data are employed to validate and compare the approaches
presented in the previous chapter. The IBF solutions as well as the direct WMN and MS
solutions were tested with various types of data: single or double simultaneously active
sources, with or without location priors, and with noise-free or realistically noisy data.
The location priors employed could be either accurate or mislocated (i.e. centred or not
on the location of the active source), and of different levels, weak or strong. For the
simulations with noisy data, two levels of signal-to-noise ratio were employed, low or high.

7.1 Criteria and simulated data

Two criteria were used to assess and compare the performance of the different methods

presented in the previous sections (IBF5, IBF10, WMN and MS solutions).

1. “Localisation Error” (LE) is defined as the distance between the location 7 of the
maximum (of the absolute value) of the reconstructed source distribution j, and the

location 7, of the original source set j, :

LE = |7, — )|

82
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Figure 7.1: Two-dimensional example of Localisation Error (LE) and Root Mean Square
Error (RMSE). LE is the distance between j, and j, maxima and RMSE is the integral of
the difference between j, and j, (grey shade).

2. “Root Mean Square Error” (RMSE) is defined as the norm of the difference between
the reconstructed source distribution j, and the original source set j, :

— %( g o |)>2 72)

= \max([j,[)  max(|j,

where j,; is the I element of j,.

The “Localisation Error” (LE) provides a measure of the localisation accuracy of the
reconstruction method, as shown in figure 7.1. A small value of LE indicates that the lo-
cation of the original source was well recovered. The “Root Mean Square Error” (RMSE)
measures the “goodness of fit” of the reconstruction. Figure 7.1 shows that a small RMSE
indicates a small discrepancy between the original and reconstructed source distributions.
The RMSE is only useful to further compare two solutions that have approximately the
same LE. Indeed, if both solutions have almost the same LE, the one with the smaller
RMSE should be preferred as the reconstructed source is then more focal. A very focal re-
constructed source with a large LE will have a smaller RMSE than a blurred reconstructed
source with a small LE, but the latter solution, although over smoothed, provides at least
some location information.

For the simulations employing instantaneous noise-free data, the sources j, were gener-
ated at randomly selected locations within the head model described in section 4.4. Each
source comprised a set of connected dipoles within a 7mm radius of a “central” dipole.
For each source j,, the potential v, at the electrodes was generated with the equation 5.6.
Information about prior location was provided as a sphere of 12mm radius, and dipoles
within this volume were defined as being a priori active sources, i.e. the corresponding
diagonal elements of a (see section 6.2) were set to 1.

For the data with realistic noise, instantaneous sources j, were generated at ran-
domly selected locations, then each source j, was modulated over time to generate a
time-extended N; x N, data set J,. The time course adopted for all the sources is shown
in figure 7.2. The noise-free potential V at the electrodes was then generated with the
equation 5.6. The data with realistic noise V¢ were eventually obtained by adding the
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Figure 7.2: Time course of the sources and example of data with realistic noise. Free
brain activity is added to the noise-free signal at one electrode (left), and all the sources
have the same time course. The level of noise is scaled at two different levels in order
to produce two data sets with two signal-to-noise ratio (SNR): SNR=1.5 (middle) and
SNR=6 (right).

averaged free brain activity € to V: Vg =V + €. The averaged free brain activity £ was
scaled to achieved two different levels of signal-to-noise ratio (SNR). The SNR was defined
as the ratio between the power of the potential V over the scalp, i.e. at the electrodes,
and the average (over time) power of the free brain activity € over the scalp. In one case,
the SNR was kept low at 1.5 and, in the other case, it was set high at 6. The potential
at one electrode over time with these two SNR is shown in figure 7.2. The location priors
were produced as for the instantaneous noise-free simulations.

7.2 Simulations with a single active source, noise free

The case of single active sources is considered first. For each source set, LE and RMSE
were calculated for the IBF5, IBF10 and WMN methods in each of the following cases: 1.
without priors, 2. with priors (weak and strong) centred on the original source (accurate
priors), 3. with priors (weak and strong) placed anywhere in the volume (incorrect priors).
As explained in section 6.3, no prior about the location of the sources can be included in
the MS method, therefore the same solution was used for all the simulations. The results
of a typical simulation are shown in figure 7.3.

7.2.1 Solution without location priors

The whole solution space was evaluated by generating a source set around each of the
12300 dipoles in the model. The results obtained for LE and RMSE are summarised in
figure 7.4.

The IBF10, IBF5 and MS solutions have approximately the same localisation ability,
with about 80% of the sources recovered within 20mm of their original location. The LE
of the WMN solution is spread over a much larger range, and thus, although its RMSE
is smaller than any other method, its poor localisation ability makes it a less efficient
method.

The RMSE of the MS solution is on average larger than that of the IBF5 and IBF10
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Figure 7.3: Example of a single active source reconstruction: The original source set is
shown at the top. Below are the (absolute value of the) source reconstructions obtained
with the four solutions presented (IBF10, IBF5, MS and MS) without priors. The ampli-
tude of the sources was normalised between 0 and 1 for all the solutions.
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Figure 7.4: Localisation Error (LE), left, and Root Mean Square Error (RMSE), right,
for the four solutions applied to the simple source simulated data: IBF10, IBF5, MS and
WMN solutions, all without location priors.

solutions. This result reflects the fact that the MS solution is overly smoothed. Thus the
IBF5 and IBF10 solutions are able to reconstruct focal activity more accurately. As less
coherence is imposed on the IBF5 solution, it is less “blurred” and thus the IBF5 solution
yelds somewhat smaller RMSE than does the IBF10 solution.

7.2.2 Solution with accurate location priors

Because of computational limits it was not possible to assess the entire solution space with
a priori location information (a new solution must be calculated for every set of priors).
Therefore a set of 100 randomly selected sources were employed in this section. (For this
reason, the results obtained for the MS solution are slightly different from those obtained
in the previous section). The results obtained for LE and RMSE with weak and strong
priors are summarised in figure 7.5.

The inclusion of prior location information greatly improved the performance of the
IBF5, IBF10 and WMN solutions, which all outperformed the MS solution. The IBF5
solution performed best of all, but both IBF solutions outperformed the WMN solution,
particularly when the prior information was entered as a weak constraint only. With the
IBF solutions, the reconstructed activity was more focal (smaller RMSE) and more than
80% of the sources were recovered within 4mm of their original location.

7.2.3 Solution with incorrect location priors

A set of 100 locations were randomly selected to provide prior location information. Cor-
responding IBF10, IBF5 and WMN solutions were then produced for the two levels of
location constraint (weak and strong). Independently, 200 source sets j, were randomly
generated and their corresponding electrode potentials calculated. For every combination
of prior location and original source j,, the source distribution j, was then reconstructed
and the LE and RMSE were calculated.

The prior mislocation was defined as the distance between the location of the original
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Figure 7.5: Localisation Error (LE), left, and Root Mean Square Error (RMSE), right, for
the four solutions (IBF10, IBF5, MS and WMN) applied to the simple source simulated
data, with location priors: weak (top) and strong (bottom). The MS solution does not
incorporate prior location information.
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source set and the corresponding prior information. The prior mislocation was divided
into four “bands” of 30mm width: 1-30mm, 31-60mm, 61-90mm and 91-120mm. Within
each band of prior mislocation, a “maximum LE” was calculated, such that at least 80%
of the sources were recovered with this LE at most (for simplicity, the LE was also divided
in bands: 0-4mm, 4-12mm, 12-20mm, etc). The mean RMSE for each band of prior
mislocation was calculated as well. For reference, the results obtained in the two previous
sections are included in the table. The results are presented in table 7.1.

With weak priors, the LE of both IBF10 and IBF5 solutions were similar to the case
where no priors were employed. Thus the prior mislocation had rather little effect on the
solution. By contrast, with strong priors, the IBF solutions were substantially affected by
the incorrect prior location. This effect was more important for the IBF5 solution than
the IBF10 with the difference being expressed mainly for the smaller prior mislocation. In
general the WMN solution behaved poorly.

7.3 Simulations with two active sources, noise free

We consider in this section the case of two simultaneously active source sets of equal
strength. Two factors influence the reconstruction of two sources: the distance between
them and their relative power in measurement space (i.e. at the electrodes). The power
of a source set (at the electrodes) is calculated from the sum of squares of the electric
potential generated at the electrodes. The power of proximate sources is very similar
because their lead fields are almost collinear (although the orientation of the sources can
still have some influence on the power of the electric field at the electrodes) and they might
be difficult to distinguish in the reconstruction because of their proximity. Distant sources
should be more easily distinguishable but their relative power can vary widely depending
on their relative depths in the brain and their orientation, rendering their localisation
more difficult.

The methods presented in the previous sections (IBF5, IBF10, WMN and MS so-
lutions) were applied to simulated data using different ranges of source separation and
power. The separation was divided into five “bands” of 30mm width (as in section 7.2.3
for the prior mislocation): 1-30mm, 31-60mm, 61-90mm and 91-120mm. The ensuing
relative power of source pairs was used to further stratify the source configurations into five
“bands” according to a logarithmic scale: 1099-10%1, 10%1-10%2, 10%2-10%3, 100-3-10%4
and 10%4-10%%, i.e. 1.00-1.26, 1.26-1.58, 1.58-2.00, 2.00-2.51 and 2.51-3.16. Obviously
all combinations of separation and relative power do not occur with equal source strengths,
e.g. separation of 1-30mm and relative power 2.51-3.16 cannot be obtained, and in these
cases no results are shown. For each of the remaining combinations, 100 pairs of sources
were selected randomly, data generated and the activity reconstructed.

The RMSE was calculated with equation 7.2. As two sources were employed in these
simulations, the LE was calculated as follows. For each pair of sources j,; and jgo, centred
at location ry and ry, the original source set j, was the sum of jo1/||jo1]] and jo2/lljoz||, and
the potential at the electrodes was then generated using 5.6. The absolute value of the
reconstructed activity j, (for the MS solution, the 2-norm of the three components at each
location was used instead of the absolute value) was thresholded at 50% of its maximum,
leaving a set of suprathreshold clusters of active sources. The location ry of the maximum
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Table 7.1: Localisation Error (LE) and Root Mean Square Error (RMSE) for different
degrees of mislocation of the location priors. Only the three solutions in which location
priors can be incorporated (IBF10, IBF5 and WMN) are tested. The prior mislocation is
defined as the distance between the location of the original source set and the correspond-
ing prior. The prior mislocation was divided into four “bands” of 30mm width: 1-30mm,
31-60mm, 61-90mm and 91-120mm. The localisation error is expressed as the maximum
LE required to recover at least 80% of the sources. (The actual percentage of sources
recovered within this LE are given in brackets.) The RMSE is the mean RMSE within
this band of mislocation. For comparison the values obtained for the MS solution are the
following : within a LE of 20mm, 91% of the sources are recovered and the mean RMSE

is 16.2.
Priors Priors
mislocation | strength IBF10 IBES WMN
N 1o 20 (86%) | 20 (85%) | 44 (85%)
o0 [ weak || 4(90%) | 4(95%) | 28 (85%)
strong 4 (97%) 4 (100%) 4 (82%)
aomm|_weak || 20 (86.3%) | 20 (30.2%) | 44 (84.2%)
max strong || 20 (81.8%) | 28 (95.8%) | 44 (85.5%)
LE [ 4 o | weak | 20 (80.9%) | 28 (85.1%) | 52 (35.4%)
[mm] strong || 28 (88.0%) | 44 (83.0%) | 52 (85.1%)
Loomm |_weak || 20 (825%) | 20 (815%) | 52 (85.6%)
strong || 20 (82.4%) | 28 (85.2%) | 52 (33.9%)
weak || 20 (88.1%) | 20 (37.0%) | 44 (86.3%)
1-12
O e |20 (88.1%) | 20 (86.7%) | 44 (85.9%)
No no 11.0 10.3 3.6
mislocation weak 8.2 5.0 4.7
strong 6.5 2.7 3.8
1-30mm weak 11.0 9.5 3.6
mean strong 10.8 8.5 3.6
RMSE weak 11.1 9.8 3.6
S-60mm - — e 11.0 8.9 3.6
weak 10.9 9.7 3.6
01-90mm — e 10.9 9.1 3.6
weak 10.9 9.6 3.6
M2 0mm — e 10.8 9.0 3.6
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of each cluster (cluster peak) was compared to r; and ry. According to the number and
location of the maxima, three cases are possible:

e only one peak survived after thresholding. In this case only one value can be at-
tributed to the LE, the number of original sources recovered (NRec) is 1 and the
number of spurious reconstructed sources (NSpur) is 0.

e many peaks (>2) but all closer to r; than ro. Now only one value (the minimum
distance between r, and ry) can be attributed to the LE, NRec is 1 and NSpur is
equal to the number of clusters minus 1.

e many peaks (>2) that are spread around r; and re. Here two values (the minimum
distance between the r;’s and r; and r9) can be attributed to the LE, NRec is 2 and
NSpur is equal to the number of clusters minus 2.

As well as the LE and the RMSE criteria, the number of original sources recovered (NRec)
and the number of spurious reconstructed sources (NSpur) were assessed for each recon-
struction method. Nrec provides us with the number of sources actually recovered while
NSpur indicates how many spurious (and difficult to interpret) clusters were left after
thresholding. An example of the reconstructed activities is presented in figure 7.6.

7.3.1 Solution without location priors

Here the solutions were calculated without prior knowledge about the location of active
sources. The number of original sources recovered (NRec) varied considerably among the
methods and for the different degrees of source separation and relative power. The values
of NRec are summarised in table 7.2.

For every method and source separation, the risk of recovering only one source (NRec=1)
increased with the difference of relative power of the sources. Over all, the two sources
were recovered in only 48% 47% 40% and 56% of the cases for the IBF10, IBF5, MS and
WDMN solution respectively.

The values of LE, NSpur and RMSE seemed to depend mainly on the number of sources
recovered (NRec = 1 or NRec = 2), and varied little according to the distance between
sources or their relative power. Therefore, the values of NSpur and RMSE were averaged
over all conditions, either for NRec=1 or NRec=2. The LE was also considered differently
according to the value of NRec. As in section 7.2.3, a “maximum LE” was calculated such
that at least 80% of the sources were recovered within this LE. When NRec=2, two values
were available for LE, a “small” one and “large” one. As the order of the sources within
each pair is arbitrary, two “maximum LE” were calculated, one for the “small LE” (best
case) and one for the “large LE” (worst case). These results are summarised in table 7.3.

The maximum LE obtained were smaller than that observed for single sources, compare
the first line of table 7.1 with table 7.3, especially for the cases of NRec=1 and NRec=2 (for
the “small” LE). The difference is due to the way the LE is measured. Whereas previously
(sections 7.2.1 and 7.2.2), only the maximum of the absolute value of the reconstructed
activity was used, here maxima of lesser amplitude were also considered.
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Original source

IBF10 source re-
construction

IBF5 source re-
construction

MS source recon-
struction

WMN source re-
construction

Figure 7.6: Example of reconstructions of two simultaneously active sources: The original
source sets are shown at the top. Below are the source reconstructions (thresholded
absolute value) obtained with the four solutions presented (IBF10, IBF5, MS and WMN)
without location priors. The amplitude of the sources was normalised between 0 and 1 for
all the solutions.
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Table 7.2: Percentage of source reconstructions where both sources were recovered
(NRec=2). The IBF10, IBF5, MS and WMN solutions, without priors, are tested for
different degrees of source separation and relative power. In each cell of the table, the top
two figures correspond to the IBF10 and IBF5 solutions and the bottom two figures, to
the MS and WMN solutions respectively. When data could not be generated (see main
text for justification), the values are replaced by “n.a.”.

Source separation
R;i?;’e 1-30mm | 31-60mm | 61-90mm | 91-120mm
Lg00.qg0 || 78 8462 56 |56 50 |65 58
39 66 |53 69 |51 66 |63 67
100-1.100-2 74 76 |53 53 |51 49 | 28 25 Solutions
36 68 |51 62 |51 68 |37 42 IBF10 IBF5
021005 | 72 7 |46 39 [40 41 |33 39 MS  WMN
41 58 |38 54 |40 55 |37 42
35 36 |30 24 |18 18
0.3_100.4
10710 A or 54 |22 44 |20 39
32 29
0.4_1(0.5
10Y*-10 n.a. n.a. 30 A7 n.a.

Table 7.3: Max LE and mean values of NSpur and RMSE when NRec=1 or NRec=2.
The IBF10, IBF5, MS and WMN solutions, without priors, are tested. NSpur and RMSE
were averaged over all the conditions. The LE is expressed as the maximum LE to recover
at least 80% of the sources within this LE, the actual percentage of sources recovered
within this “max LE” is in brackets. For NRec=2, two values were calculated, one for the
smallest LE and one for the largest LE of the pair of sources.

[ IBF1I0 | IBF5 | MS | WMN |
NRec=1 [ 12 (96%) | 12 (98%) | 12 (82%) | 28 (82%)

m[?r’fH{J]E NReoo—g || 12 (98%) [ 12 (99%) | 12 (92%) | 28 (87%)
20 (88%) | 20 (90%) | 20 (83%) | 44 (81%)
mean NSpur | NRec=L [ 2.38 5.12 0.53 1.83
NRec=2 || 5.50 10.83 1.25 1.39
NRec=1 || 9.93 9.18 14.68 131

mean RMSE

NRec=2 12.94 12.01 18.51 4.65
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As the smoothness of the IBF solutions is less than that of MS solution, close sources
can be better distinguished with the former method. The IBF solutions were less likely
to miss a source but at the cost of recovering more spuriously active sources than the MS
solution. This renders the interpretation of the reconstructed activity more difficult (even
if the clusters are generally spread around the location of the original sources) but a higher
threshold could be used (with the risk of missing an original source). The small value of
NSpur (< 1) for the MS solution when only one source is recovered shows that a single
cluster was left after thresholding in many cases but there were still few cases where there
was spurious reconstructed activity.

The figures obtained for the RMSE correspond to that observed for single sources (see
top row of table 7.1). The RMSE is slightly larger but this could be explained by the fact
that there were two active sources instead of one.

7.3.2 Solution with two location priors

In this section, the same set of sources as in section 7.3.1 was used but the solutions (IBF5,
IBF10 and WMN only) were calculated with (weak and strong) prior knowledge about
the location of both active sources. Similarly to the case without priors, section 7.3.1, the
number of sources recovered (NRec) varied greatly between conditions (source separation
and relative power) and type of solution. The values of NRec are summarised in table 7.4.

For the IBF5 solution with strong priors, the proportion of cases where only one source
out of two was recovered was only slightly reduced, compared to the simulations without
prior location (except for sources separated by less than 30mm). Otherwise the risk of
recovering only one source (NRec=1) is larger when priors are included than without, as
can be seen by comparing table 7.2 and 7.4. Nevertheless, the two sources are recovered
more often with strong priors than weak priors, especially for distant sources. Over all,
two sources are recovered in 42%, 38% and 34% of the cases with weak priors and in 43%,
50% and 45% of the cases with strong priors for the IBF10, IBF5 and WMN solutions
respectively.

The values of LE, NSpur and RMSE vary little between conditions (source distance
and relative power) but depend instead on the number of sources recovered (NRec=1 or
NRec=2). Therefore, the values of LE, NSpur and RMSE were averaged and presented
like in section 7.3.1. These results are summarised in table 7.5.

The inclusion of location priors greatly improved the LE, as was also the case in the
simulations with only one active source described in section 7.2.2. With weak or strong
priors, both IBF solutions reconstructed most of the sources within 4mm of their original
locations, except in the “worst case” of the IBF10 solution with weak priors. The LE of
the WMN solution was improved by the inclusion of weak priors but only reached the level
of the IBF solutions with the use of strong priors. All these figures are in agreement with
those obtained for the simulations with only one active source, see top row of table 7.1.

The number of spurious reconstructed sources (NSpur) was also greatly reduced by the
introduction of location priors. There was still some spurious reconstructed activity but
much less than when no priors were included, as can be seen by comparing table 7.3 and
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Table 7.4:

Percentage of reconstructed sources where both sources were recovered

(NRec=2). The IBF10, IBF5 and WMN solutions, with location priors (weak and strong),
were tested for different degrees of source separation and relative power. In each cell of
the table, the figures in the top row corresponds to the IBF10 solution with weak (left)
and strong (right) priors, in the middle row to the IBF5 solution with weak (left) and
strong (right) priors, and in the the bottom row to the WMN solution with weak (left)
and strong (right) priors respectively. When data could not be generated (see main text
for justification), the values are replaced by “n.a.”.

Source separation

Relative || 4 o0 110 | 31-60mm | 61-90mm | 91-120mm
pOWGI“
61 52 |53 56 |54 55 |63 64
10°0-10%t || 52 62 | 50 65 |51 65 |57 72
55 55 |38 52 |33 47 |44 58
54 49 |43 50 |52 53 |27 31
100-1.1002 || 47 55 [ 43 61 |41 58 |26 42
51 49 |34 50 |34 53 |26 38
52 43 [32 34 |39 39 |41 43
1002-1093 || 53 56 | 26 42 |38 45 [34 50
49 42 |27 32 |29 43 |37 53
27 33 |26 29 |18 23
109-3-1004 29 32 |20 35 |21 31
25 38 |21 39 |25 29
25 27
100-4-100- 20 27 n.a
21 33

IBF10
IBF5
WMN

priors

weak
weak
weak

strong
strong
strong
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Table 7.5: Max LE and mean values of NSpur and RMSE for NRec=1 and NRec=2. The
IBF10, IBF5 and WMN solutions, with location priors (weak and strong), were tested.
NSpur and RMSE were averaged for NRec=1 and NRec=2 separately. The LE is expressed
as the maximum LE to recover at least 80% of the sources within this LE and the actual
percentage of sources recovered. For NRec=2, two values were calculated, one for the
smallest LE and one for the largest LE of the pair of sources.

[ Priors | Nrec || IBFI0 | IBF5 | WMN |
T || 4 (92%) | 4 (100%) | 12 (86%)
weak 5 4 (97%) | 4 (100%) | 4 (94%)
max LE 12 (94%) | 4 (98%) | 28 (86%)
[mm] T || 4 (98%) | 4 (100%) | 4 (98%)
strong |, |4 (100%) | 4 (100%) | 4 (99%)
4(90%) | 4 (100%) | 4 (88%)
ek |1 0.57 0.16 1.41
mean NSpur 2 2.22 0.72 3.34
strong |} 0.161 0.01 0.76
2 0.75 0.05 1.61
S
mean RMSE strong | 5.95 3.33 1.40
2 7.76 3.45 477

7.5. The largest benefit was enjoyed by the IBF5 solution. With strong priors, the IBF5
solution gave almost the ideal figures of NSpur=0 for NRec=1 (one source is missing but
there is no spurious reconstructed activity) and NRec=2 (the two sources are recovered
without spurious activity). The WMN solution showed significantly smaller NSpur only
for the strong priors but these values were still worse than those of the IBF solution.

The RMSE values were also improved by the inclusion of priors and proved to be
similar to those obtained with only one active source to reconstruct, as shown in table 7.1.

7.4 Simulations with a single source, with realistic noise

In this section the case of a single active source is considered but, contrary to sections 7.2
and 7.3, time extended data with realistic noise are used. The aim of this section is to
study the influence of the level of noise in the data (signal-to-noise ratio or SNR) on the
performance of the different source localisation methods. Even though the regularisation
hyperparameter A was optimally estimated, it can be expected that with low SNR the
performances of the different methods will be reduced compared to the ideal noise-free
case. A set of 100 locations were randomly selected to generate the original source sets J,
and corresponding data sets Vg =V + &.

The IBF10 and IBF5 solutions were calculated using the spatial and temporal basis
functions calculated in sections 6.1.1 and 6.1.2. The hyperparameter A was estimated for
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each data set with the ReML iterative procedure. For the WMN and MS solutions no basis
functions (even temporal) were employed but the hyperparameter A was still obtained
through the ReML algorithm. In the literature (Pascual-Marqui et al., 1994; Pascual-
Marqui, 1999), the MS solution is usually presented and implemented in the LORETA
software (Pascual-Marqui, 1998) for the ideal noise-free case using equation 5.26. Although
Pascual-Marqui (1995) suggested employing noise regularisation by taking A # 0, no
method for estimating A was provided. The IBF10, IBF5 and WMN were tested without
location priors and with weak and strong location priors.

The LE and RMSE cannot simply be calculated with the relations given in 7.1 and 7.2
but the same idea was adapted to compare the original source set J, with the reconstructed
source set J, = [jr1jr2 ... jr,n)- In order to obtain a single value of LE for each pair
of source sets (J,,J;), the following procedure was adopted: Considering j, maqz, the
amplitude of the largest (in absolute value) dipole in J,., only instantaneous reconstructed
sources j,; including at least one dipole of amplitude (in absolute value) greater than 85%
of jrmaz are taken into account. For each of those selected instantaneous reconstructions
Jri, the LE; is calculated as in 7.1. Finally the largest value of LE; is kept as the “worst
case LE” for the data set. Similarly to equation 7.2, the RMSE is defined as

RMSE = ||J; — J%| (7.3)
where J;‘: = Jr/jr,mam and Jﬁ = Jo/jo,mam-

7.4.1 Solution without location priors

Here the solutions were calculated without prior knowledge about the location of active
sources. For each source set, the hyperparameter A was estimated for the two levels of noise
(low and high SNR) and the LE and RMSE were calculated. The histograms of the values
of LE and the estimated A are shown in figure 7.7. As the values of A vary on a large scale,
its logarithm in base 10 (log;o A) was used. For some simulations, when the SNR was high,
the value of A tended to zero. Those solutions correspond to equation 5.26 used in the
noise-free case, where the data minimises the constraint after perfectly fitting the model.
Those values of A\ were not considered for the histogram plot as limy_,qlog;g A = —o0.

As in sections 7.2.3 and 7.3, a “maximum LE” (max LE) was calculated with the LE
of all the simulations, such that at least 80% of the sources were recovered within this
maxLE. The maxLE, mean value of RMSE and of log;y A are summarised in table 7.6 for
the two levels of SNR. When the value of A tended to zero, those values were not included
to calculate the mean of log;y A. In table 7.6, the percentage of cases where A was different
from zero is written under brackets after the mean value of log; A.

Considering the LE, the IBF10, IBF5 and MS solutions with noise regularisation had
results slightlyworse than in the noise-free case as can be seen by comparing figure 7.7 with
figure 7.4 and table 7.6 with the first line of table 7.1. The noise component included in the
data could thus be appropriately taken into account and accommodated. By contrast, the
MS solution without regularisation was clearly inefficient for low SNR and only performed
slightly better for high SNR. The WMN solution without location priors remained sensitive
to noise even with the inclusion of noise regularisation and its performance was much worse
than that in the noise-free simulations. The WMN solution without location priors was
unable to localise the source of the signal.
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Figure 7.7: LE, left, and log;, A, right, for the four solutions (IBF10, IBF5, WMN and
MS with and without noise regularisation) for two levels of signal-to-noise ratio (SNR),
low SNR (top) and high SNR (bottom), applied to the simple source simulated data with
realistic noise.

Table 7.6: Max LE and mean values of RMSE and log;, A. The IBF10, IBF5, WMN, MS
(with and without noise regularisation) solutions were tested for two levels of signal-to-
noise ratio (SNR), low and high. The LE is expressed as the maximum LE to recover at
least 80% of the sources within this LE, the actual percentage of sources recovered within
this “max LE” is in brackets. The mean of log;y A only takes into account values of A
different from 0, the percentage of cases where A # 0 is in brackets.

MS MS
SNR IBE10 | IBES ) WMN with regul. | w/o regul.
low 28 28 116 28 116
max LE (87%) | (83%) | (84%) (89%) (82%)
o] [ [ 20 28 116 20 52
(81%) | (88%) | (82%) (86%) (81%)
low 1.43 1.57 1.71 4.08 na
mean (100%) | (100%) | (100%) | (100%)
log g A . 0.53 0.65 0.81 2.75
igh |70y | (r0%) | (11%) | (100%) n-a
mean low 191.6 177.3 62.7 284.9 288.4
RMSE | high 167.9 150.0 54.3 241.8 250.9
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The hyperparameter A was on average smaller for the high SNR than the low SNR. As
would be expected, with higher SNR, the model could be more confidently fitted and the
constraints had less influence on the solution. For the high SNR, there were 26 to 30%
of cases where no noise regularisation was required (A — 0) and the data were treated
as noise-free. The main difference between the IBF10, IBF5 and WMN solutions is the
relative level of intrinsic smoothing imposed a priori, respectively large, small and none.
On average the estimated hyperparameter A was smaller for the IBF5 solution than for
the WMN solution and smaller for the IBF10 solution than for the IBF5 solution. With
its larger level of smoothing, the IBF10 is more constrained and less sensitive to noise,
therefore less noise regularisation was required. The values of A obtained for the MS
solution cannot be directly compared to those of the IBF and WMN solutions because the
constraints imposed on the solutions are defined in completely different ways.

The mean RMSE was larger for the low SNR than the high SNR, indicating a more
accurate reconstruction with higher SNR. As for the noise-free case, the RMSE was pro-
portional to the level of smoothing imposed on the solution. In the present simulations
the values of RMSE were much larger than for the noise-free cases but this was due to the
way the RMSE is calculated: on only one time frame for the noise-free simulations, as
shown by equation 7.2, and over the entire epoch length in here, as shown by equation 7.3.

7.4.2 Solution with accurate location priors

In this section, the solutions were calculated with accurate priors about the location of
active sources, as was done for the noise-free case in section 7.2.2. The IBF10, IBF5 and
WMN solutions were assessed for two levels of noise, low and high SNR, and two level of
priors, weak and strong priors. The values obtained for LE and log;, A are shown in figure
7.8. The maxLE, and mean RMSE and log;y A for each solution and each condition are
summarised in table 7.7.

The inclusion of location priors improved greatly the accuracy of the reconstruction,
compare figures 7.7 and 7.8, and tables 7.6 and 7.7. With the strong priors, the LE of the
IBF10, IBF5 and WMN solutions was approximately equivalent to the LE observed with
the noise-free simulations (compare figure 7.8 with figure 7.5 and table 7.7 with the three
first lines of table 7.1). However with weak priors, only the IBF5 solution performed as
well as in the noise-free simulations. With weak priors, the LE of the IBF10 solution was
reduced compared to the results obtained without priors but remained larger than that of
the noise-free case. In the case of the WMN solution, the inclusion of the weak priors did
not improve the accuracy of the solution.

The values of the hyperparameter A were on average similar to (or slightly larger
than) those obtained without priors. They followed the same proportions as well : larger
values for small level of a priori smoothing and/or low SNR and smaller valuse with
large amounts of a priori smoothing and/or high SNR. The percentage of cases where the
data were treated as noise free (A — 0) was reduced by the introduction of priors. This
indicates that, even at high SNR, when location priors are included the constraint has
a stronger influence on the solution than when no location priors are employed: when
location priors are included, a larger part of the data V¢ can be considered as noise and
is not accomodated by the model (A # 0), thus the solution relies more on the constraints
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Figure 7.8: LE and log;y A for the three solutions in which location priors can be incorpo-
rated (IBF10, IBF5, WMN) for two levels of SNR and two levels of location priors, applied
to the simple source simulated data with realistic noise.
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Table 7.7: Max LE and mean values of RMSE and log,;q A. The IBF10, IBF5 and WMN
solutions were tested for two levels of SNR (low and high) and two levels of priors (weak
and strong). The LE is expressed as the maximum LE to recover at least 80% of the
sources within this LE, the actual percentage of sources recovered within this “max LE”
is in brackets. The mean of log;y A only takes into account values of A different from O,
the percentage of cases where A\ # 0 is in brackets.

[Priors [SNR || IBFI0 | IBF5 | WMN
e 110w ][ 12 (90%) 4 (96%) 100 (32%)
max LE high || 12 (89%) 1 (96%) 116 (83%)
mm] [ Tow 1 (89%) 4(100%) 12(99%)
& Migh || 4 (39%) 4 (100%) 1 (82%)
weak 110V 133.6 85.7 60.1
mean high 1211 75.6 52.8
RMSE [ T Tow 98.2 39.4 193
& Migh 93.4 37.9 48.9
weake | Jow_[[ 144 (100%) [ 1.59 (100%) | 1.73 (100%)
mean high || 0.54 (80%) | 0.66 (72%) | 0.76 (73%)
logio A | .| low | 146 (100%) | 1.64 (100%) | 1.84 (100%)
& Mhigh || 0.52 (36%) | 0.69 (89%) | 0.82 (99%)

imposed.

With the inclusion of priors, the RMSE was reduced in all cases. Nevertheless, the
RMSE remained larger for the data with low SNR than with high SNR. The IBF5 solution
with strong location priors and high SNR data provided the most accurate and focal
solution.

7.5 Summary of results

With ideal noise-free data and in the absence of prior information about the location
of active sources, the IBF solutions had approximately the same localisation ability as
the MS solution but the IBF’s RMSE was smaller. Because less smoothing is imposed
on the IBF solutions than on the MS solution, the former allow solutions with higher
spatial frequencies and therefore the reconstructed activity with the IBF solutions was
more focal. When two sources were active, the IBF solutions were more likely to recover
both sources but with the consequence that the number of spurious sources was much
larger for the IBF than the MS solution, especially if little smoothing was imposed. The
level of smoothing imposed on the solution is the key factor affecting the regularisation
of the source localisation problem. Clearly the IBF approach lies somewhere between the
overly smoothed MS solution and the overly focal and insufficiently constrained WMN
solution.

When location priors were introduced, the LE was greatly reduced, even with a weak
constraint for the IBF solutions, but the WMN solution required a strong constraint to
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reach the level of performance shown by IBF solutions. When two sources were considered
the number of spurious sources was also greatly reduced, especially with strong priors,
rendering the reconstructed activity more easily interpretable. However, the risk of missing
one source was increased somewhat, except for the IBF solution with little smoothing and
strong priors. Nevertheless only the WMN solution with weak priors would miss more
sources than the MS solution. When the priors were included, the IBF solutions provided
better reconstructions than the WMN solution, and the MS solution was outperformed in
every case by the three other solutions. The combination of smoothing and location priors
offers the best regularisation of the source localisation problem but, contrary to the case
without priors, less smoothing seems to be required.

The case of mislocated priors does not impinge on the MS solution. With incorrect
location priors, the performance of the IBF solution depended on the amount of smoothing
imposed. With a large smoothing constraint, the results were similar to the case where
no location priors wer employed. By contrast the IBF solution with a small smoothing
constraint was more affected by prior mislocation (especially when the prior location was
strong). The larger smoothing constraint rendered the solution less sensitive to the bias
produced by the mislocated prior. Therefore the constraint of greater smoothing and weak
location priors may be preferred when there is risk that the location prior is inaccurate.

When realistic noise is included in the data, the performances of the IBF solutions
were slightly diminished compared to the simulations with noise-free data. The noise
regularisation was adapted to the SNR of the data, i.e. the hyperparameter A was propor-
tional to the noise level. Similarly to the noise-free simulations, when no location priors
were provided the best localisation (on average) was achieved with a relatively large a
priori smoothing. Less smoothing was required however if location priors were provided.
With noise regularisation the MS solution behaved like the IBF solutions without loca-
tion priors: its performance was slightly reduced by the noise component and the noise
regularisation was adapted to the SNR. On the other hand, if no noise regularisation was
applied, the LE of the MS solution was increased dramatically, even for a high SNR. The
WMN was also strongly affected by the noise and only capable of some localisation when
strong priors were imposed on the solution.

In conclusion, the possibility of controlling and limiting the smoothness imposed on
the solution, while being able at the same time to include location priors, ensured that
overall the IBF solution outperformed the MS and WMN solutions. When data with
realistic noise were used, the ReML algorithm proved to be an efficient way to estimate
the hyperparameter X\ as this ensured that the noise regularisation adapted automatically
to the level of noise in the data.



Chapter 8

Discussion and conclusion

The only way to overcome the intrinsic limitations (on temporal or spatial resolution) of
individual brain imaging techniques is to combine data obtained from different techniques
within the same mathematical framework. Such a combination should provide an optimal
solution that harnesses the strengths of each individual technique.

In general, the advantages of a distributed linear approach to the source localisation
problem, as presented in section 5.1, are the following: A non-iterative linear solution
is readily available and calculable, as presented in section 5.4. Unlike ECD-oriented ap-
proaches, no assumptions are made about the number of active sources, and those sources
can be relatively diffusely distributed. In the framework of a distributed linear solution,
structural information extracted from MR images, such as source orientation and corre-
lation, can be combined with the EEG data. It is also possible to include other sources
of data, such as activation maps from functional MRI (or PET) studies, to refine the
localisation without impairing the fine temporal resolution of EEG data.

Structural information is usually obtained by reconstructing the cortical surface from
an MR image. This is a non-trivial and difficult process (Dale & Sereno, 1993; van Essen
& Drury, 1997; Dale et al., 1999; Fischl et al., 1999; Fischl & Dale, 2000; Goebel & Max
Planck Society, 2000) but, in the present work, the explicit reconstruction of the cortical
surface is avoided by using a user-independent method to extract anatomical information
from MR images. The sources are not constrained to lie on a folded surface but are spread
on a fully three-dimensioinal grid. The orientation of each dipole is directly incorporated
in the lead field matrix. Each oriented dipole can thus be viewed as a voxel in a three-
dimensional volume, the amplitude of a dipole representing the activity in that voxel.

The approach adopted in this work does not strictly follow the scheme of a distributed
linear reconstruction. The spatial IBF obtained from the anatomical information allows
a two-step approach to imposing constraints on the source localisation problem. Firstly
the size of the problem is reduced by projecting the solution space onto the sub-space
spanned by the spatial IBF. Secondly the anatomically constrained problem is solved. In
the present case, a linear solution was chosen because of its desirable properties and ease
of use, but other methods could be employed to estimate the best combination of spatial
basis functions.
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The extraction of spatial IBF's is the key element in the approach presented here. Al-
though systematic, it has the disadvantage of being time-consuming and computationally
demanding. Fortunately, the spatial IBFs need only be calculated once for a specific head
and source model. Afterwards, various hypotheses about prior location of activation and
different data sets can be studied with the same spatial IBF set but different “soft” con-
straints. The introduction of the spatial IBF offers a clear separation between the “hard”
constraints relying on anatomy and other more intuitive “soft” constraints.

In the absence of prior location information, the MS solution provides source recon-
struction with an accuracy similar to that of the IBF solution. But as its name suggests,
the reconstructed sources obtained with the MS solution are generally too smooth. With
the MS solution it is not possible to make full use of anatomical information either: the
sources are constrained to the grey matter but their orientation is left free and the smooth-
ness constraint, a simple three-dimensional Laplacian, does not respect cerebral anatomy.
Moreover, no functional information about the (possible) location of the activity within
grey matter can be introduced.

The WMN solution as employed here uses only part of the structural information to
constrain the solution: the orientations of the sources are fixed but no spatial correlation
among them is imposed. In contrast to the MS solution, the WMN was inefficient without
location priors but was capable of accurate localisation with strong location priors. The
solution presented and tested by Liu et al. (1998), here termed “Surface WMN” (SWMN)
solution, is equivalent to the WMN solution employed here. The difference between the
two solutions lies in the source model: the sources are spread on the extracted cortical
surface in Liu et al. (1998) instead of a three-dimensional grid as in the WMN employed
in this work. In both WMN and SWMN solutions, no spatial correlation between the
sources is assumed and a priori information about the location of the sources, obtained
from (simulated) fMRI activation maps, was introduced to better constrain the problem.
The SWMN solution was tested by Liu et al. (1998) for four values of the relative weighting
of the prior location (fMRI activation): 0%, 90%, 99% and 100% which corresponds, in
equation 6.6, to values of 5 equal to : 0, 2.16, 9 and co. In my simulations, three levels were
used (8 =0, 1 or 4), corresponding to relative weightings of 0%, 75% and 96%. By setting
B — 00, one assumes an infinitely strong confidence in the location priors, effectively
precluding any activity outside those priors. The conclusion of Liu et al. (1998) to use a
compromise value of 90%, i.e. 8 = 2.16, for the weighting of the a priori source location
is supported by the simulations in the present work. Interestingly, the introduction of
some smoothness in the IBF solution means that a smaller bias or weighting towards the
a priori location can be employed, as good localisation results are already obtained with
the IBF solutions and 8 = 1, equivalent to a relative weighting of 75%.

The solutions used here were tested with two simultaneously active sources in an ex-
treme case where both sources are perfectly synchronised in time and have exactly the
same strength in the source space, but not in the measurement space. In those particu-
lar conditions and without location priors, the two sources were recovered efficiently (the
WMN solution is not considered here) in less than 50% of the cases. Moreover there
were always a few spurious reconstructed sources (according to the amplitude threshold-
ing adopted). Contrary to what might have been expected, the introduction of location
priors did not help in recovering the two sources in more cases. Nevertheless, the location
priors improved the solution by greatly reducing the number of spurious sources. If the
signals produced by two sources are almost collinear in the measurement space, or if the
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amplitude of the signal generated by one source is larger than that generated by the other
one, then one source will be “hidden” or “shadowed” by the other. Location priors cannot
make the sources more visible but will help locating more sharply the sources.

The solutions employed here were also tested with data, generated by a single ac-
tive source, contaminated by realistic noise and background brain activity. The ReML
procedure was successfully applied to control the noise regularisation by systematically
estimating the hyperparameter A in equation 5.18 or 5.19. With noise regularisation, the
IBF, MS and WMN solutions behaved almost as they did with ideal noise-free data. If
no noise regularisation was applied, i.e. A — 0, the MS solution was strongly affected by
the noise and was unable to provide any proper localisation, even for a high SNR. The
maximum smoothing constraint alone is thus not enough to control the effect of the noise
contained in the data. Even at constant SNR and for the same levels of location priors, the
values of A vary on a large scale, hence the use of a logarithmic scale to present the results.
As the noise component £ was the same for all the simulations, the value of A depends
on the source configuration and the distribution of potential it generates over the scalp,
therefore any a priori fixed value of A can lead to sub-optimal solutions. An advantage of
using the spatial and temporal IBF is that the iterative ReML algorithm is more tractable.
Indeed, at each iteration a problem of size NN, X N, is solved instead of N; x N, where
N, < Nj and N, < Ny, which requires much less memory and computational time.

The solutions presented here were not compared to ECD approaches. Apart for the
moving ECD solution, where the iterative fitting procedure has to simultaneously opti-
mise the location, orientation and amplitude of the ECDs, the fixed-ECD solutions are
particular cases of the more general linear distributed solution. ECD-based attempts at
localisation have used fMRI (or PET) activation maps as prior constraints on the inverse
problem: a single ECD is placed (or “seeded”) at the centre of gravity of fMRI (or PET)
regions of activation, or at any location that seems useful, and then the orientation and
amplitude of the ECDs are fitted to the EEG data, e.g. in Opitz et al. (1999). In the
linear solution framework, the seeded ECD solution can be obtained by setting the fMRI
weighting, parameter 8 in equation 6.6, to infinity or equivalently by setting the a priori
variance of the sources outside the fMRI activations to 0.

The effect of errors in the solution of the forward problem on the accuracy of the recon-
struction of the sources was not assessed here. There is no way to completely characterise
this effect in a realistic head model as the synthetic data are generated with the same
model (or lead field) used to solve the inverse problem.

In conclusion I have demonstrated that the combination of EEG-MRI-fMRI data in
the same mathematical framework, controlled by a set of hyperparameters, results in more
accurate and reliable solutions than two commonly used source localisation approaches.
Ultimately the IBF solution proposed here will need to be applied and validated on real
data sets. This will be the subject of future work.
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Appendix A

Green’s theorem

A.1 Calculation of ¢ = 1/r, V¢ and V¢

If 9 is defined as the inverse of the distance r between the origin of space ¢ and any point
7=[zyz], then ¢ = 1/r = (22 +3? + 2%)"1/? and

Vip = —— = —— (A.1a)

'/“3 ,r2
V) =0 (A.1b)

where 71 is a unit vector oriented in the same direction as 7

This is easily shown by calculating

= 0y, oy, oY
V?/J—%elﬁ—@ey—i-gez (A.2)
where
i(l) = —a(2’ +y> +27) 7 (A.3a)
ox \r
o (1N _ 2 2 2\—3/2
2 (5) = v e (A3h)
o (1N _ 2 2 2\—3/2
52 (r) = —z(z"+y~ +2°) (A.3c)
SO e e
= Tért+yey+ze,
Vi = — Ad
4 (22 4 42 + 22)3/2 (A.4)
Then 2 0 .
2 3 S 1) 1P 1P
= [ — - - A
Vi = V() = Tr + 5t (A.5)
where
2 2 .2 .2
PGy e o
ox2 Oz (22 4 42 + 22)3/2 (22 + 42 + 22)5/2
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529 22?2
0y (a2 +y? + 2252 (A1)
R —z2 — 9% 4222
022 (32142 + 22)02 (A.60)
therefore
Vi) =0 (A7)
A.2 Singularity point in Green’s theorem
Green’s theorem stated in 2.10 says:
> [ [ 907 = gm9um) — ot Ve — gt
= Y[ [pV0V6- 4V.0%y] du (A.8)
k Uk

and 1 is defined by ¢ = 1/r where r is the distance between the origin g, an arbitrary
point not on a surface, and any point on the surface S; or in the volume vg. One volume
integral, say over v, is singular for r = 0, so a small homogeneous spherical volume v, of
radius € and surface S, around the origin & has to be excluded! from the volume integrals
(and the corresponding surface Se added to the surface integrals).

For an homogeneous volume (like v,), and v and ¢ two well behaved functions, Green’s
theorem simplifies to:

[ [#9@¥) = 69(%0)] dv = [ [p0%0 - 4o¥u] & (A.9)

So by excluding v, from the volume v,,, adding S, to the surface integrals, and taking
1 = 1/r, equation A.8 becomes:

£/ (oo oo () (oo ()] 8
+/ (6 v(l))ds
S [ [;¥ewn - o9 (o9(7))]

k#m

of [%6(0%) . (N(%))] dom  (A10a)
_ Z/ [ (o) — do V2 (%)} doy,

SRR P
= ];;n/ V OVqS dvy,

+ o ;6(06@ dvm, (A.10c)

!This is possible because & is not on any surface and e is sufficiently small.
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The integral over S, can be calculated explicitly for we know that 7 = e and V(1/r) =
—ii/r?, where 7 is oriented from inside the sphere S, toward outside S.. From the
sign convention used up to now for the surface integral, we have dS. = —idS. : dS, is by
definition oriented from inside the volume v,, — v towards outside, i.e. from outside S
towards inside S, relative to g, so d:é’e is oriented along —.

In spherical coordinate, the surface integral over d§€ is expressed by :

/E o <%6¢ Y <%>> s, = - /Uﬂa <1('Fi§¢) + QS%) 2ne?sinady  (A.1la)

€

= —27r/ o (e(ﬁﬁ(ﬁ) — (;5) sin o doy (A.11b)
0
and if € tends to 0 then,
. 1o = (1 2 .
lim [ o <—V¢ — ¢V <—>> S, = —27r0¢/ sin o do (A.12a)
e—=0 /g, € € 0
= —4dmo¢ (A.12b)

where o and ¢ are evaluated at the origin (7= 7).

With € — 0, v, vanishes and equation A.10 becomes:

5 [, [l 9 oty — 07 -

| =

)}c@l

—drop+ Y / VoW dn (A1)
k Uk

_ 3

which is similar to equation 2.11.
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Analytical solution of Maxwell’s
equations in a three sphere shell
model

The analytical solution of the simplified Maxwell’s equation 2.7 is possible for particular
volume model. One such model, commonly used in the field of EEG source localisation,
is the three sphere shell model described in section 4.1 and figure 4.1. It consists of
three concentric spheres of radius rq, 79 and r3, with vy < r9 < r3: The innermost
spherical volume represents the brain volume. The volume comprised between the spheres
of radius 71 and r9 models the skull layer. The outer layer volume, between radii 9 and
r3, corresponds to the scalp layer.

Let’s assume that the brain and scalp volumes have the same conductivity o, and that
the skull volume has a conductivity os;. A current source dipole 7, located at a height z
on the axis €,, generates a potential distribution V'(§) on the surface of the outer sphere.
In spherical coordinates, i.e. §= 5(0, ¢) as shown in figure B.1, this potential is calculated
by the following formula from Ary et al. (1981):

V(5) = V(0,9
L 2t l§(2n+1)2
n

Ao R? nz::l dp(n+1)

(B.1)

[n m, Py (cos 0) + (my cos ¢ + my, sin @) Py (cos 9)]

where

e b= z/r3 is the eccentricity of the dipole,

e mg, my and m, are the components of the dipole m = [m, m, m,]' along the main
axes,

e ¢ = 04 /0 is the relative conductivity of the skull volume to the conductivity of the
brain and scalp volumes,
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wy

—

€x

Figure B.1: Current source dipole in a three sphere shell model: The dipole m =
[mg my m,]", located at a height z on the axe €,,generates a potential distribution V(§),
with §= 35(0, ¢), on the surface of the outer sphere.

e P,(cos) and P!(cos®) are Legendre and associated Legendre polynomials,
e d, is defined by :

dy = [(n+1)¢+n] [nn—_fl-i-l}

2n+1
H1= O+ Vg alEt = ) —n -2 (1) )
2

with f1 = 7‘1/’!“3 and fg = 7‘2/7‘3.

Even though the potential V(3') is expressed as an infinite sum of terms, it is only
necessary to calculate a few tens of them, as for n increasing the corresponding terms
rapidly converge to zero. There also exists a closed-form approximation that requires less
computational effort (at the cost of some minor error) as shown by Sun (1997) but this
approximate solution was not used here.

The analytical expression of the potential for more complicated layouts can be found
in the literature: four spheres with different conductivity (Arthur & Geselowitz, 1970;
Cuffin & Cohen, 1979), cylindrical volume (Lambin & Troquet, 1983; Kleinermann et al.,
2000) or cubic volume (Ferguson & Stroink, 1994).
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Tikhonov regularisation and
Moore-Penrose pseudo-inverse

There exists a direct relationship between the Tikhonov regularisation and the Moore-
Penrose (MP) pseudo-inverse, the MP pseudo-inverse is infact a particular case of the
Tikhonov regularisation. From the relation 5.17, the problem to solve is:

v+e=Lg ki (C.1)

The Moore-Penrose pseudo-inverse 1.1'3: of the matrix Ly, is obtained through its sin-
gular value decomposition (SVD):

Ip, =USW!= Li = WS U! (C.2)

where U'U = Iy, W/W = Iy, and the singular values s; of the diagonal matrix S are
“filtered” into s;" to create S™. The filter applied on the singular values s; can be expressed
by the following function F'(s;):

1/s; if s; #0
+ . ) 1
s; =F(si) = { 0 if s =0 (C.3)

So, if u; and w; represent the i*" column of U and V respectively, solving the problem
C.1 with the MP pseudo-inverse is equivalent to

l;s:Lérv :iv:(ugv‘g)w- (C.4)
Ve i :

= S

Problems arise when some singular values are very small: these singular values (and
respective left and right singular vectors) have a strong influence on the solution of C.1
because their inverse is very large and may amplify noise or error components in C.4.

The “Truncated SVD” is a possible solution: only the singular values above some
threshold ¢ are considered. The filter applied on the singular values s; is then expressed
by the following function F¢(s;):

1/82' if s > ¢

+ _ ) —
si = Fe(si) = { 0 otherwise (C.5)
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The truncation of the series of singular values ensures the rejection of the smallest singular
values, but this rejection is rather abrupt and this may not be the best solution if the
spectrum of singular values is decreasing smoothly.

If we consider the weighted minimum norm problem 5.19 with C¢ = Iy, and Hp, = Iy, ,
K, = arg min {|[Ts, k — ve | + \* [l *} (C.6)

the “zero order”! Tikhonov regularised solution can also been expressed from the singular
value decomposition of L, (Varah, 1979). The filter F'(s;) applied to the singular values
s; depends on the hyperparameter \:

1 1 S;
T=R()=———s| — = —— C.7
K A(si) (14—)\2/3?) si  S2+ N2 (C.7)

Therefore the solution of C.6 has the form:

Ne
f<s = Z ! (u, V‘S)wi = 2": 5 (ut Vo)W (C.8)
—~\1+ A2/s2 84 P s24+ A2

The filtering F(s;) of the singular values in the Tikhonov regularisation ensures that

e for large s; compared to A, Tikhonov solution is similar to the pseudo-inverse,

e for small s; compared to A the solution is regularised: the singular value s; and its
associated singular vectors u; and v; do not influence the solution k;.

The value of X\ fixes the level at which the influence of the smaller singular values is
reduced, and this is achieved smoothly over the spectrum of singular values.

A similar relation can be obtained for the general case where C¢ # Iy, and Hp, #
Iy, by the generalised singular value decomposition (GSVD) of the pair of matrices

(CEI/QLBS,HBS), as shown in (Varah, 1979).

L«zero order” because Hg

|lks||? is minimised. A “first order” (resp. “second order”) Tikhonov regularisation minimises the norm
of the first (resp. second) derivative of the solution by defining Hg, as a first (resp. second) derivative

operator.

= INkS is a “zero” order derivative operator and the norm of the solution
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Non-instantaneous problem and
ReML solution

The non-instantaneous problem 5.28 (Vp, + &g, = Lp, K;;) has the same form as equa-

tion 5.43:
A, R, ] 1)

_ B | _
poaxin « [2]-[4

B,

2
where Var(R) = C(6;,63) = l 0iln, 0 ]

0 621,
This equation can be rewritten like equation 5.30 (or 5.20, with A = 6,/6,):

( bl,l i [ A1 0 0 i ( I'171 i
: 0 0 X :
%A Kk * bl,q _ 0 0 A . g
b*=A*x" +r & bor | | As 0 0 o+ r (D.2)
. Xq .
: 0o - 0 :
L bg’q | L 0 0 A2 | L roq |

where A* is a ¢gm X gn matrix, x* is a gn x 1 vector, b* and r* are ¢m x 1 vectors, and
with x;, the ™ column of X, by ; (resp. ri;) the m; first rows of the i** column of B
~th

(resp. R) and bg; (resp. ry;) the mgo last rows of the i column of B (resp. R). The
covariance matrix C* of r* is still linearly parameterised by 6; and 65 :

(0%1,”1 0 0 i
0o . 0 0
. | 03 Lgm, 0 B 0 0 621,
C _[ 0  03Lum, | 021,,, 0 0O (D-3)
0 0o . 0
L 0 0 621, |
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Solving directly equation D.2 and updating the hyperparameters is unpractical for large
q. By considering E* = A*'C*1A*:

0 2ALA| +60,°ALA, 0 0 E 0 0
E" = 0 0 =0 . 0 (D.4)
0 0 O07°ALA, +65%ALA, 0 0 E
such that . .
6, A'ibl,l + 0, A5b2,1
)A(* — E*flA*C*flb* — E*fl . (D5)

07°Alb, , + 052Alb,
and each x; is, of course, computed as in 5.39 (or 5.23).

In order to update the hyperparameters, the residuals r* = b* — A*x* and the loss
of degrees of freedom have to be estimated. Similarly to equation 5.41, p] and p; are
estimated by

p] = trace (0{2E*71A’1‘tA’1‘) = q trace (HfQE_lAﬁAl) =qp (D.6a)
ps = trace (HQ_QE*_lA;tAE) = q trace (02_2E_1A§A2) =gp2 =q(n—pl) (D.6b)

where p; and po are calculated like in 5.41.

Therefore the updated values of 8 should be

q
t
ro.r
st % Z 1,24 1,2
A rr i=1

67 = = (D.7a)

gmi —pi  q(mi—p1)
q

¢
- Z T9iT2,
i=1

gma —ps  q(ms —p2)

(D.7b)

which is similar to 5.42.
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